

Practice Exams

for A Level OCR A Physics

Paper 1: Modelling Physics

zigzageducation.co.uk

**POD
8269**

Publish your own work... Write to a brief...
Register at publishmenow.co.uk

 Follow us on Twitter **@ZigZagScience**

Contents

Thank You for Choosing ZigZag Education
Teacher Feedback Opportunity
Terms and Conditions of Use.....
Teacher's Introduction
Write-on Section
Set 1: Paper 1
Set 2: Paper 1
Set 3: Paper 1
Set 4: Paper 1
Non-write-on Section
Set 1: Paper 1
Set 2: Paper 1
Set 3: Paper 1
Set 4: Paper 1
Mark Schemes.....
Set 1: Paper 1 Mark Scheme.....
Set 2: Paper 1 Mark Scheme.....
Set 3: Paper 1 Mark Scheme.....
Set 4: Paper 1 Mark Scheme.....

INSPECTION COPY

COPYRIGHT
PROTECTED

Teacher's Introduction

These practice examinations support the OCR A Level specification for Physics A (H556). This specification is new, and the first examinations began in 2017. This means that students have very limited access to past papers.

Although they can work through many relevant questions from text books and old syllabuses, they are unable to get a complete feel for the format, scope and length of the three papers they will have to sit in the real examination period.

These practice examinations have, therefore, been written so that teachers can give in doing whole 'past papers'. Each paper follows the exact same format and mark scheme as the real examination. The whole specification is addressed, and the papers meet the minimum mathematical skills and 15% practical skills required by the exam board. The mark scheme format as the real mark schemes and use the same language, so that students understand of how mark schemes work and what the examiners are expecting.

These papers are best used in their entirety, either as a mock paper sat under examination conditions, or as a homework exercise set in the last weeks before the examination period. This gives students the chance to learn how to pace themselves correctly. They will also be less anxious as the examination period since they know better what to expect.

Questions marked with an asterisk (*) are level of response questions, which will test communication skills.

Note regarding non-write-on section

Set 3: Paper 1 contains some content that requires drawing on a graph or table. A copy of this test which should be handed out to students before beginning the paper.

INSPECTION COPY

**COPYRIGHT
PROTECTED**

Free Updates!

Enter your email address to receive any future free updates made to this resource or other Physics resources you have purchased, and details of any promotions for your

* resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

Go to zzed.uk/freeupdates

Specification Cross-Reference Table

Paper 1				Paper 2			
Set 1	Set 2	Set 3	Set 4	Set 1	Set 2	Set 3	Set 4
Module 2: Foundations of Physics							
2.1 Physical quantities and units	2, 4	2	1, 4, 21	1, 2, 3		1, 10	
2.2 Making measurements and analysing data	3, 20	1, 17, 18, 19, 21	2, 8, 18, 19	1, 7, 18, 19, 21	18	4, 17, 18, 19	17, 19
2.3 Nature of quantities	1, 8, 16, 18	2, 3, 5, 16		4, 6, 17		5	
Module 3: Forces and motion							
3.1 Motion	5, 21	5, 16, 17, 18	5, 16	2, 4, 20			
3.2 Forces in action	8, 16, 17, 18, 19	4, 6, 17	4, 6, 17	2, 6, 16, 17, 18			
3.3 Work, energy and power	7, 18	18	3, 7	3, 9, 12, 13, 20			
3.4 Materials	6, 9	8, 19	4	2, 8, 19			
3.5 Newton's laws and momentum	10, 11, 18, 19	4, 7	4, 18	9, 16			
Module 4: Electrons, waves and photons							
4.1 Charge and current				1	16		
4.2 Energy, power and resistance				2, 3, 6, 16	1, 16, 17	1, 2, 3, 17	
4.3 Electrical circuits				2, 3, 6, 16		2, 3, 17	
4.4 Waves				4, 5, 7, 17	3, 4, 5, 18, 19	4, 17, 19	
4.5 Quantum physics				8, 18	20	6, 17	

INSPECTION COPY

COPYRIGHT
PROTECTED

Paper 1				Paper 2				Paper 3			
Set 1	Set 2	Set 3	Set 4	Set 1	Set 2	Set 3	Set 4	Set 1	Set 2	Set 3	Set 4
Module 5: Newtonian world and astrophysics											
5.1 Thermal physics	20	11, 20, 21	9, 19, 22	10, 21, 22							
5.2 Circular motion	12, 14	22		11							
5.3 Oscillations	13	12	10, 11 5								
5.4 Gravitation	21	13	12, 21								
5.5 Astrophysics and cosmology	19, 20 5, 22	10, 13, 14, 15, 24	13, 14, 15	14, 15, 23, 24							
Module 6: Particles and medical physics											
6.1 Capacitors				19	2, 6	8, 9	1,				
6.2 Electric fields				9, 10	21	10, 20					
6.3 Electromagnetism				12, 20	7, 8, 9, 21	11					
6.4 Nuclear and particle physics				1, 1, 12, 14, 15, 21, 22	10, 11, 12, 13, 14, 22, 23	12, 13, 14, 21, 22, 23	1				
6.5 Medical physics				13, 23	15, 24	15, 23, 24	1				

INSPECTION COPY

Practice Exam Paper 1

Set 1

Name	
------	--

INSPECTION COPY

Time allowed

2 hours 15 minutes

Instructions

Answer **all** of the questions and use the space provided.

Information

The total number of marks available for this paper is **100**. Section A is worth 15 marks and Section B is worth 85 marks. The number of marks available for each question is shown on the front.

For this paper, you will need:

- Data, Formulae and Relationships booklet

Additional materials required

- Pencil
- Electronic calculator
- Ruler (cm/mm)

**COPYRIGHT
PROTECTED**

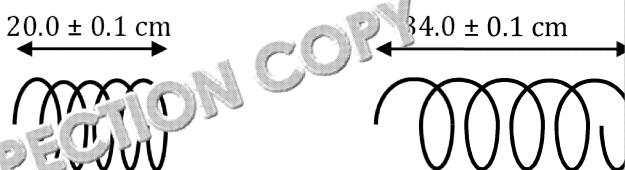
Section A

You should spend a maximum of 30 minutes on this section.
Write your answer to each question in the box provided.
Answer all the questions.

1 Which statement is the best description of scalar quantities?

- A They have no units.
- B They have no magnitude.
- C They have magnitude but no direction.
- D They have neither magnitude nor direction.

Your answer



2 Which of the following units could be used for a measurement of the rate of change of position?

- A kg m s^{-2}
- B kg m s^{-3}
- C $\text{kg m}^2 \text{s}^{-2}$
- D $\text{kg m}^2 \text{s}^{-3}$

Your answer

3 A student stretches a spring from an initial length of $20.0 \text{ cm} \pm 0.1 \text{ cm}$ to a final length of $34.0 \text{ cm} \pm 0.1 \text{ cm}$.

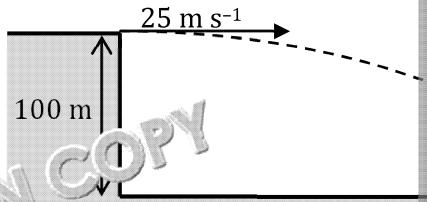
Your answer

4 r and h are both measurements of length.

Which combination has no units?

- A $(r/h)^{1/2}$
- B $4/3 \pi r^3$
- C $2\pi r h$
- D $\pi r^2/h$

Your answer


**COPYRIGHT
PROTECTED**

5 A projectile is launched horizontally from a vertical height of 100 m. The projectile is 25 m s^{-1} . What is the magnitude of the projectile's velocity when it hits the ground?

- A 25 m s^{-1}
- B 44 m s^{-1}
- C 51 m s^{-1}
- D 70 m s^{-1}

Your answer

6 Which of the following best fits a material that can be drawn out into a long, thin wire?

- A ductile
- B elastic
- C strong
- D polymeric

Your answer

7 Masses of 25 kg and 60 kg hang on opposite sides of a light, inextensible string that passes over a pulley. They are released from rest at the same time, and the heavier mass falls 1.2 m.

By how much is the potential energy of the system reduced?

- A 590 J
- B 690 J
- C 1200 J
- D 1700 J

Your answer

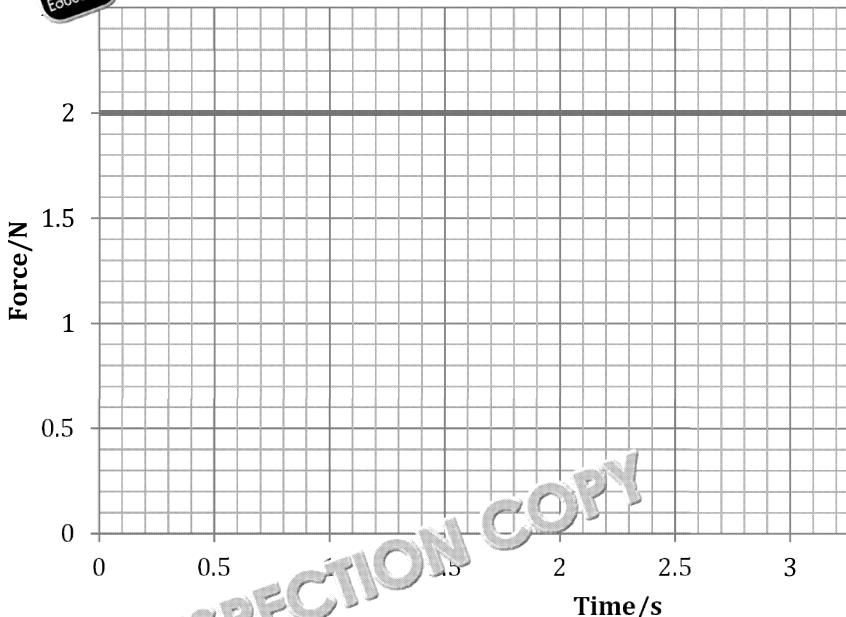
8 An object of mass $m = 6.5 \text{ kg}$ is moving vertically upwards, pulled by a rope at a rate of 2.0 m s^{-2} .

What is the tension T in the rope?

- A 6.5 N
- B 51 N
- C 64 N
- D 77 N

Your answer

**COPYRIGHT
PROTECTED**


9 A cylindrical wire has a diameter of 3.2×10^{-4} m. When a force of 28 N is applied, the length of the wire increases by 2 %.

What is the value of the Young modulus of the wire?

- A 17 kPa
- B 17 MPa
- C 17 GPa
- D 17 TPa

Your answer

10 An object of mass 2.0 kg is initially at rest. A force then acts on the object.

What is the velocity of the object after 3.0 s?

- A 3.0 m s^{-1}
- B 3.5 m s^{-1}
- C 6.0 m s^{-1}
- D 7.0 m s^{-1}

Your answer

11 A magnet of mass m travels at velocity v and collides with a stationary magnet. The collision is perfectly inelastic.

What percentage of the initial kinetic energy is lost in this collision?

- A 25 %
- B 33 %
- C 50 %
- D 67 %

Your answer

**COPYRIGHT
PROTECTED**

12 A particle performs 3.5 complete revolutions in 11 s.

What is the angular velocity of the particle?

- A 0.32 rad s^{-1}
- B 0.50 rad s^{-1}
- C 2.0 rad s^{-1}
- D 3.1 rad s^{-1}

Your answer

13 An object oscillates with simple harmonic motion and has a total energy of E . If the object's mass doubles but its amplitude stays the same.

What is the total energy of the object now?

- A $\frac{1}{4}E$
- B $\frac{1}{2}E$
- C $2E$
- D $4E$

Your answer

14 An object performs circular motion at constant speed.

Which of the following statement(s) is/are **not** correct?

- 1 Work is done on the object as it travels
- 2 The velocity of the object is changing
- 3 The object's acceleration is perpendicular to its velocity

- A 1, 2 and 3
- B Only 1 and 2
- C Only 2 and 3
- D Only 1 and 3

Your answer

15 Red giant stars occupy the top right-hand corner of the Hertzsprung–Russell diagram.

What does this tell us about their luminosity and temperature compared to the Sun?

	Luminosity	Temperature
A	Lower	Higher
B	Lower	Lower
C	Higher	Lower
D	Higher	Higher

Your answer

**COPYRIGHT
PROTECTED**

Section B

Answer **all** the questions.

16 (a)* With the help of a labelled diagram, describe an experiment that you could use to measure the terminal velocity in a viscous fluid of a small ball bearing. Explain how you could estimate the percentage uncertainty in your results.

INSPECTION COPY

INSPECTION COPY

INSPECTION COPY

INSPECTION COPY

**COPYRIGHT
PROTECTED**

(b) Fig. 16.1 shows the free body force diagram for the ball bearing when in motion. Two of the forces have labels.

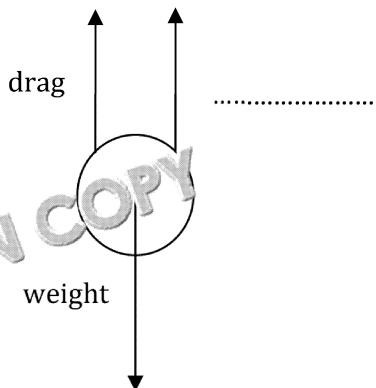


Fig. 16.1

(i) Complete the missing label on Fig. 16.1.

Fig. 16.2 shows the velocity-time graph of the ball bearing from

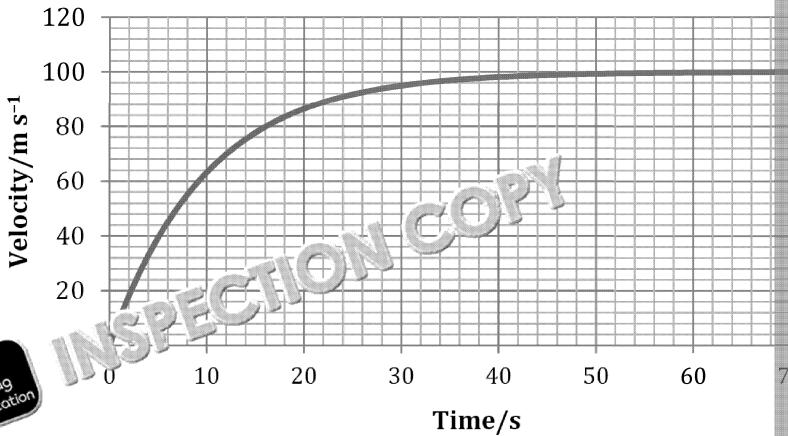


Fig. 16.2

(ii) Use the graph to estimate the total distance travelled by the ball bearing from rest to its terminal velocity at 50 s.

(iii) Stokes' law states that the drag force, F , on the ball bearing is given by the equation

where η = coefficient of viscosity

r = radius of ball bearing

v = velocity of ball bearing

The units for η are Pa s (as in seconds).

Show that the equation $F = 6\pi\eta rv$ is homogeneous with respect to

**COPYRIGHT
PROTECTED**

17 This question is about the application of Archimedes' principle.

(a) State Archimedes' principle.

.....
.....

A solid block has a mass of 4.0 kg . A student attaches a light string to the block and lowers it into a container of water until it is completely submerged. The tension in the string when the block is fully submerged and at rest is 31 N .

Density of water = 1000 kg m^{-3}

(b) (i) Calculate the upthrust force, U , on the block.

(ii) Show that the volume V of the block is approximately $8 \times 10^{-4} \text{ m}^3$.

$V =$

The block is made of an alloy (mixture) of aluminium and bronze.

Density of aluminium = 2700 kg m^{-3}

Density of bronze = 8100 kg m^{-3}

(c) Calculate the percentage mass of aluminium in the alloy.

INSPECTION COPY

COPYRIGHT
PROTECTED

percentage mass of aluminium =

18 A car travels down a hill at an initial speed of 22 m s^{-1} .

The hill has a constant gradient, as shown in Fig. 18. The total mass of the car and driver is 800 kg .

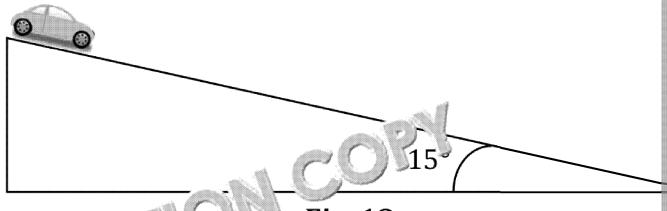


Fig. 18

(a) Show that the component of the car's weight down the slope is approxi-

component of weight

(b) The driver applies the brakes, and the car comes to a halt in a time of 8.0 s as it reaches the bottom of the hill.

(i) Calculate the deceleration of the car.

deceleration

(ii) Calculate the total resistive force acting on the car.

total resistive force

(iii) Calculate the work done on the car by the resistive force.

W

(iv) Calculate the loss in kinetic energy of the car.

loss in kinetic energy

(v) Explain why your answers to (iii) and (iv) are not equal.

.....

.....

**COPYRIGHT
PROTECTED**

(c) Describe and explain what would happen to the stopping distance of a car if, alone, the driver was accompanied by other passengers and their heads were not restrained.

.....

.....

.....

.....

19 (a) Newton's law describes a pair of forces.

(i) State **two** ways in which the forces in this pair are different.

.....

.....

.....

.....

(ii) State **two** ways in which the forces in the pair are the same.

.....

.....

.....

.....

(b) Fig. 19 shows one of the forces acting on a book which rests on top of a table.

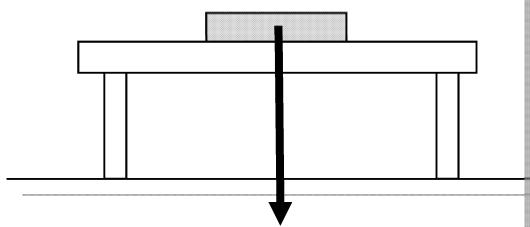


Fig. 19

(i) Describe as fully as possible the force which makes a Newton's law balance, labelled in Fig. 19.

.....

.....

.....

.....

**COPYRIGHT
PROTECTED**

(ii) The book is in *equilibrium*.

One condition which must be fulfilled in order for equilibrium to act on the book must be balanced.

What is the other condition?

.....
.....

(iii) Describe how it is possible the force which balances the weight

.....
.....
.....
.....
.....

20 A student introduces some smoke into a glass cell. He illuminates the cell under a microscope. He sees the smoke particles performing *Brownian motion*.

(a) Describe the motion of the smoke particles.

.....
.....

(b) Explain what causes this motion.

.....
.....
.....
.....
.....

(c) A student wants to calculate the specific latent heat of fusion of wax granules which she melts using an electrical heater with a power of 1500 W. She measures at 15-minute intervals the amount of wax that melts, then repeats her measurements. She calculates an average mass and its uncertainty. The table below shows the results.

Time t/min	Mass ₁ /g	Mass ₂ /g
15	0	0
30	47	59
45	85	104
60	152	163
75	204	215
90	252	268
	318	328

(i) Complete the missing value in the table, with its uncertainty.

(ii) The student plots a graph of her results, which is shown in Fig. 20. Complete the graph. Add vertical error bars to all the points.

(iii) Draw a best fit line through the points.

(iv) Use the graph to determine a value for the specific latent heat of $\text{L}_1 \text{g}^{-1}$, assuming that there are no heat losses.

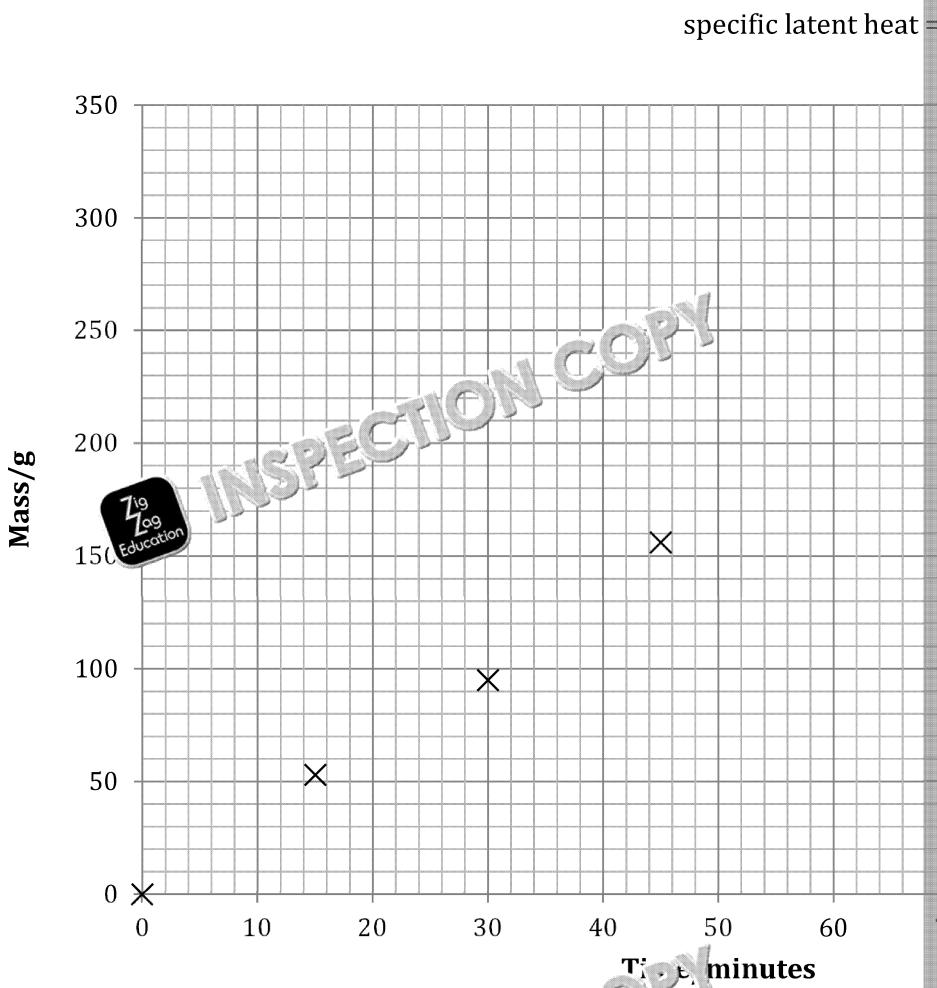


Fig. 20

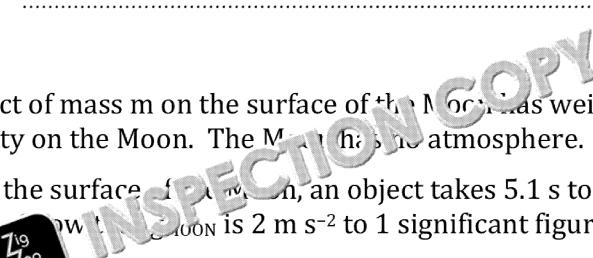
**COPYRIGHT
PROTECTED**

(v) Draw a worst fit line through the points. Use it to calculate the p value for the specific latent heat of wax.

INSPECTION COPY

percentage uncertainty

(d) Halfway through the process, solid and liquid wax are in thermal equilibrium.


State **one** similarity and **one** difference between the properties of the solid wax and those in the molten wax.

1. **Similarity**

.....

2. **Difference**

.....

21 An object of mass m on the surface of the Moon has weight mg_{MOON} , where g_{MOON} is the acceleration due to gravity on the Moon. The Moon has no atmosphere.

(a) On the surface of the Moon, an object takes 5.1 s to fall a vertical distance of 10 m. Show that g_{MOON} is 2 m s^{-2} to 1 significant figure.

(ii) The same object is now launched from the Moon's surface at a speed of 25° to the horizontal. Calculate the time of flight of the object.

Assume that the Moon's surface is level.

COPYRIGHT
PROTECTED

(iii) If the object was launched in an identical manner on Earth, you would expect the time of flight to differ (no calculation is required).

.....
.....

(b) Mimas is one of Saturn's moons.

(i) State Newton's law of gravitation in words.

(ii) Use this law to show that the acceleration due to gravity on the surface of Mimas can be calculated using the formula:

$$g_{\text{MIMAS}} = \frac{GM}{R^2}$$

where M is the mass of Mimas and R is its radius.

(iii) Calculate the value of g_{MIMAS} .

Average density of Mimas = 1.2 g cm⁻³

Average radius of Mimas = 200 km

**COPYRIGHT
PROTECTED**

g_{MIMAS}

(iv) Hence, calculate the ratio $\frac{\text{weight of object on Moon}}{\text{weight of object on Mimas}}$

22 (a)* Describe as fully as possible the major events that occurred during the first 10 billion years from the Big Bang until the formation of the first galaxies. Include approximately when the Big Bang at which these events happened.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

INSPECTION COPY

COPYRIGHT
PROTECTED

(b) The furthest galaxies that we can see in our universe are approximately 13.8 billion light years from Earth.

(i) Describe **two** differences you would expect to find between the size and the structure of the galaxies that are nearest to us.

.....
.....
.....
.....

(ii) The most massive observed galaxy has a red shift of 0.1. Explain how this could be used to estimate the distance to the galaxy.

.....
.....
.....
.....

(iii) The nearest galaxy to Earth is the Andromeda Galaxy, which is 0.77 million light years away. The smallest parallax angle we can measure from Earth is 0.001 arc seconds. Explain whether or not we would be able to measure the distance to the Andromeda Galaxy using parallax methods.

INSPECTION COPY

**COPYRIGHT
PROTECTED**

INSPECTION COPY

END OF QUESTION PAPER

Set 4: Paper 1 Mark Scheme

Section A

1.	B	9.	A
2.	C	10.	D
3.	C	11.	B
4.	A	12.	D
5.	A	13.	C
6.	C	14.	B
7.	D	15.	C
8.	C		

Section B

Question	Answer	Marks
16 (a)	$F = ma$ gives $W - T = 280 \times 3.25 = 910 \text{ N}$ $\text{So } T = (280 \times 9.81) - 910 = 1840 \text{ (N)}$	C1 A1
(b)	No, because they are different types of force / act on the same body	B1
(c) (i)	$v^2 - u^2 = 2as$ gives $a = -u^2 / 2s$ $a = -64 / (2 \times 12.5) = (-)2.56 \text{ (m s}^{-2}\text{)}$	C1 A1
(ii)	$F = ma$ gives $T - W = 280 \times 2.56 = 716.8 \text{ N}$ $\text{So } T = 716.8 + (280 \times 9.81) = 3460 \text{ (N)}$	C1 A1
(d)	More likely to break when accelerating upwards because accelerating $T = W + ma$ constant speed $T = W$ descending $T = W - ma$	B1 B1
Total		9

Question	Answer	Marks
17 (a) (i)	$\text{W} = 280 \times 9.81 = 490 \text{ (N)}$	B1
(ii)	Arrow drawn vertically downwards at centre of plank	B1
(b) (i)	1. Resultant force = 0 (in any direction) 2. Resultant moment = 0 (about any point)	B1 B1
(ii)	Taking moments around L $d_{(L-CoM)}W = d_{(L - R)}R$ $4 \times 490 = R \times 6$ $R = 330 \text{ (N)}$	C1 A1
(c)	Plank most likely to tip at furthest RH end Taking moments about RH support: $L \times 6 = 2 \times 490 - 3 \times 700$ gives $L \text{ near } 9 \text{ m}$ Yes, plank will definitely tip at some point	B1 M1 A1
Total		9

INSPECTION COPY

COPYRIGHT
PROTECTED

INSPECTION COPY

COPYRIGHT
PROTECTED

Question	Answer	Marks	
18 (a)*	<p>Level 3 (5–6 marks) A clear description of all equipment required, and a detailed description of the method, leading to a clear method of analysis and method of measuring density. <i>The answer shows strong understanding and is ordered in a reasonable order and structure. The answer includes appropriate details, with evidence where applicable.</i></p> <p>Level 2 (3–4 marks) A description of most of the equipment required, and a description of the method, leading to an appropriate method of analysis and attempt at measuring density. <i>The answer shows some understanding and is ordered in a somewhat logical structure. The answer includes details that are largely appropriate, with some evidence where applicable.</i></p> <p>Level 1 (1–2 marks) A description of some of the equipment required, and a description of the method, leading to a limited attempt at analysis and measurement of density. <i>The answer shows limited understanding and is unordered. The answer includes details and evidence that are inappropriate to answer the question.</i></p>	B1 × 6	<p>Some points are correct.</p> <p>Equipment</p> <ol style="list-style-type: none"> Force Clamp Metre rule measuring cylinder vernier calliper clean cloth Top pan balance <p>Method</p> <ol style="list-style-type: none"> Measure mass by calculation Measure mass by halving Low first, then up Up then down, read from scale Volume Increase in volume <p>Accuracy</p> <ol style="list-style-type: none"> Clamp set straight, out of scale Eye level reading Read from scale Possibly due to mass <p>Analysis</p> <ol style="list-style-type: none"> Plot mass against volume Explain the graph Measure gradient Calculate density Alternative cases
(b) (i)	$F = W - U = W - \text{weight of displaced fluid}$ $= \mu Vg - \rho Vg$ $= \mu Vg \left(1 - \frac{\rho}{\mu}\right)$ $= W \left(1 - \frac{\rho}{\mu}\right)$	C1 C1 C1 A1	
(ii)	$F = ma = mg \left(1 - \frac{1000}{8960}\right)$ $a = 0.888 \text{ g} = 8.7 \text{ (ms}^{-2}\text{)}$	C1 A1	
(iii)	<p>Correctly labelled axis and graph starts at the origin</p> <p>Position gradient that gradually decreases to zero</p>	B1 B1	
	Total	14	

INSPECTION COPY

Question	Answer	Mark
19 (a)	<p>Limitations</p> <ol style="list-style-type: none"> 1. The extension is very small 2. The diameter of the wire is very small and may not be constant along the wire 3. The wire's diameter may change when stretching 4. Hard to measure initial length without stretching the wire 5. Calibration errors in instruments <p>Improvement</p> <ol style="list-style-type: none"> 1. Use calipers on the wire / Vernier scale 2. Measure at many different points and orientations along wire using micrometer 3. Measure d before and after experiment 4. Load wire initially to straighten it 5. Check calibration / recalibrate all instruments 	B B
(b)	<p>Up to stress of approx. 150 MPa, behaviour is elastic / Hooke's law is obeyed / force is proportional to extension</p> <p>After the elastic limit and up to 184 MPa, wire shows plastic behaviour / the extension decreases for the same additional load / the wire becomes harder to stretch</p> <p>After 184 MPa (yield point) the wire extends rapidly / necks</p>	B B B
(c) (i)	UTS = highest point on graph UTS = 1.84×10^8 (Pa)	B
(ii)	$E = \text{gradient of linear portion of graph}$ $= (132 \times 10^6) / (0.12 \times 10^{-2})$ $= 1.1 \times 10^{11}$ (Pa)	C A
		Total 1

Question	Answer	Mark
20 (a)	$v^2 = u^2 + 2as$ $v = \sqrt{u^2 + 2as}$ $v = \sqrt{2.5^2 + 2 \times 9.81 \times 1.4}$ $= 5.8$ (m s ⁻¹)	C C A
(b)	$\frac{1}{2}m\Delta(v^2) = \frac{1}{2} \times 58 \times 10^{-3} \times (5.8^2 - 4.0^2)$ $\Delta E_K = 0.51$ (J)	C A
(c)	Dissipated as heat energy in the ball (plus floor and surroundings)	C
(d)	$F = \frac{\Delta p}{\Delta t}$ $F = \frac{m\Delta v}{\Delta t}$ $F = \frac{58 \times 10^{-3} \times (5.8 + 4.0)}{40 \times 10^{-3}}$ $F = 14$ N	C C A G
		Total 1

**COPYRIGHT
PROTECTED**

INSPECTION COPY

Question	Answer	M
21 (a)	$m = \rho V = 2.7 \times 2 \times 2 \times 2$ $= 22 \text{ g}$	
(b)	Energy lost by iron = energy gained by aluminium and water $m_{\text{Fe}} \times c_{\text{Fe}} \times (300 - 23) = m_{\text{Al}} \times c_{\text{Al}} \times (23 - 20) + m_{\text{W}} \times c_{\text{W}} \times (23 - 20)$ $0.022c_{\text{Fe}} \times 277 = 0.1 \times 900 \times 3 + 0.25 \times 420$ $c_{\text{Fe}} = 3420/6.09$ $c_{\text{Fe}} = 560 \text{ J kg}^{-1} \text{ K}^{-1}$ (Answer to 2 s.f.)	
(c)	Method (c) gives a larger temperature rise This would lead to a smaller percentage error in measurement of temperature	
(d)	It can absorb a large amount of heat energy from the car engine without raising its temperature significantly / coming to the boil	
		Total

Question	Answer	M
22 (a)	1 kelvin is defined as the fraction $1/273$ of the thermodynamic temperature of the triple point of water At 0 K, molecules have minimum kinetic energy/ minimum motion	
(b)	pV is only proportional to T if T is measured in kelvin	
(c) (i)	Total volume $V = 3.00 + 4.50 = 7.50 \text{ m}^3$ $n = pV/RT = 1.10 \times 10^5 \times 7.50 / (8.31 \times 29)$ $= 339$	
(ii)	Number of remains constant $p \times 3.00 / (8.31 \times 253) + (p \times 4.50) / (8.31 \times 313) = 339$ $p \times (0.0119 + 0.0144) = 339 \times 8.31$ $p = 1.07 \times 10^5 \text{ (Pa)}$	
		Total

**COPYRIGHT
PROTECTED**

Question	Answer	Marks	
23*	<p>Level 3 (5–6 marks) A clear and logical description of star evolution for both low and high mass stars, with clear explanation of what provides stability at each stage. <i>The answer shows strong understanding and is in a reasonable order and structure. The answer includes appropriate details, with evidence where applicable.</i></p> <p>Level 2 (3–4 marks) A description of star evolution for both low and high mass stars plus an idea of what provides stability at some of the stages. <i>The answer shows some understanding and is ordered in a somewhat logical structure. The answer includes details that are largely appropriate, with some evidence where applicable.</i></p> <p>Level 1 (1–2 marks) A jumbled description of star evolution for either low or high mass stars but little idea of what provides stability at most of the stages. <i>The answer shows limited understanding and is unordered. The answer includes details and evidence that are inappropriate to answer the question.</i></p>	B1 × 6	<p>Example</p> <p>Main sequence</p> <ol style="list-style-type: none"> 1. Fusion 2. Radiative zone 3. Convective zone <p>Low mass stars</p> <ol style="list-style-type: none"> 1. Beta Cephei pulsations 2. Hydrogen shell 3. Granulation 4. Increasing temperature 5. Core contraction 6. Outer convective zone 7. Planetary nebula 8. White dwarf 9. Electron degeneracy 10. Supernova <p>High mass stars</p> <ol style="list-style-type: none"> 1. Red giant 2. Hydrogen shell 3. Inert helium shell 4. Stellar wind 5. Leiden 6. Neutron star 7. Neutron degeneracy 8. Butcher 9. Solar 10. Other
	Total	6	

Question	Answer	Marks	
24 (a)	The displacement of a line in the spectrum of a star/galaxy towards longer wavelengths / the red end of the spectrum <u>because the star/galaxy is receding</u>	B1	
(b) (i)	Away from us	B1	
(ii)	$\Delta\lambda/\lambda = v/c$ $v = (\Delta\lambda \times c)/\lambda$ $= 1.1 \times 3 \times 10^8 / 656.4$ $v = 5.03 \times 10^5 \text{ (m s}^{-1}\text{)}$	C1	
(iii)	$68 \text{ km s}^{-1} \text{ Mpc}^{-1} = 68 000 / (10^6 \times 3.1 \times 10^{16})$ $= 2.2 \times 10^{-18} \text{ (s}^{-1}\text{)}$	C1	
(iv)	$v = H_0 d$ $d = v / H_0$ $d = 2.29 \times 10^{23} / 9.5 \times 10^{51}$ $d = 2.4 \times 10^{18} \text{ m}$	C1 C1 A1	ECF (b)
	Total	9	