

2015 specification
first exam in 2016

WJEC

TECHNiCAL TOPiCS

Presentations and Worksheets

for AS WJEC Computer Science

**BI/
7644**

**POD
7644**

zigzageducation.co.uk

**Publish your
own work...**

Write to a brief...

**Register at
publishmenow.co.uk**

Contents

Thank You for Choosing ZigZag Education	ii
Teacher Feedback Opportunity	iii
Terms and Conditions of Use	iv
Teacher's Introduction	1
Worksheets	2
Arrays and Records	2
Logic Gates	4
Boolean Algebra	5
Sorting Algorithms	6
Searching Algorithms	7
Tracing an Algorithm	8
Data Compression	9
Sequence and Selection	10
Repetition	11
Subroutines	12
Mathematical Operations	13
Binary and Hexadecimal	14
Data Types	15
Binary Arithmetic	16
Negative Numbers	17
Floating Point Numbers	18
Relational Databases	19
Answers	20
Arrays and Records	20
Logic Gates	20
Boolean Algebra	21
Sorting Algorithms	21
Searching Algorithms	22
Tracing an Algorithm	22
Data Compression	22
Sequence and Selection	23
Repetition	23
Subroutines	24
Mathematical Operations	24
Binary and Hexadecimal	24
Data Types	24
Binary Arithmetic	24
Negative Numbers	25
Floating Point Numbers	25
Relational Databases	25

Appendix: Printouts of the Animated Presentations

Teacher's Introduction

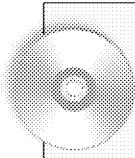
This resource is designed to support the delivery of the logical and mathematical topics from the AS WJEC specification (for first teaching in September 2015; first exams from June 2016).

The topics covered are as follows:

1. Arrays	10. Subroutines
2. Logic Gates	11. Mathematical Operations
3. Boolean Algebra *	12. Binary and Hexadecimal
4. Sorting Algorithms *	13. Data Types
5. Searching Algorithms *	14. Binary Arithmetic
6. Tracing an Algorithm	15. Negative Numbers
7. Data Compression	16. Floating Point Numbers
8. Sequence and Selection	17. Relational Databases
9. Repetition	

* The *Boolean Algebra*, *Sorting Algorithms* and *Searching Algorithms* topics are taught at AS, but also contain additional requirements at A Level. Because we know that some teachers may want to cover these concepts to AS students anyway, we have included this content even though students are not required to know it for their exams.

This content is indicated using the **A Level Only** stamp, so that you can decide whether or not to use it with your students.


For each of the topics above, there is an animated presentation, providing a step-by-step walk-through of the key concept, plus a worksheet giving students the opportunity to demonstrate their understanding.

These presentations and accompanying worksheets can be used in a number of ways:

- ✓ The animated presentations and worksheets can be used in class to introduce topics.
- ✓ The worksheets can be used as homeworks to test understanding.
- ✓ The animated presentations make perfect revision aids.
- ✓ As part of a flipped classroom, where students watch the animated presentations as preparation for the lesson. The students could complete the worksheets in class to test their understanding prior to a more in-depth discussion of the topic.

The animated presentations are provided in PowerPoint (PPTX), HTML5 and PDF formats. The HTML5 versions are included so that students can use the presentations more easily on devices which lack PowerPoint support (such as tablet computers and even smartphones), making them great for revision. Hard copies of the PDF versions have been included at the back of this pack.

Answers are provided for each worksheet which facilitate self and peer assessment.

The CD-ROM contains the animated presentations in three formats (PPTX, HTML5 and PDF), which are linked together via a HTML frontend (`index.html`).

If using on a network, it is recommended that you provide a shortcut to the frontend to allow easy access for your students.

Alternatively, you can access the individual files directly (without using the frontend), simply by navigating to the relevant folder on the CD.

Free Updates!

Register your email address to receive any future free updates* made to this resource or other Computer Science resources your school has purchased, and details of any promotions for your subject.

* resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

Go to zzed.uk/freeupdates

Arrays and Records

Use the names array shown below to help you to answer the following questions.

Index	0	1	2	3	4
Value	Susan	Ian	Barbara	Steven	Ben

1. State the value of names[0]. (1)

2. State the value of names[1]. (1)

3. How can the value 'Ben' be accessed in the names array? (1)

4. How can the value 'Sarah' be accessed in the names array? (1)

5. Create the names array using pseudocode. (2)

6. Write a FOR loop that will cycle through the names array, outputting each name. (2)

INSPECTION COPY

COPYRIGHT
PROTECTED

Use the scores array shown below to help you to answer the following questions.

	0	1	2	3
0	45	71	34	55
1	23	82	57	42
2	18	51	53	45
3	27	58	97	40

7. State the value of scores[3][1]. (1)

8. State the value of scores[1][2]. (1)

9. How can the value 71 be accessed in the scores array? (1)

10. How can the value 97 be accessed in the scores array? (1)

11. Create the scores array using pseudocode. (3)

12. Describe one difference between arrays and records. (2)

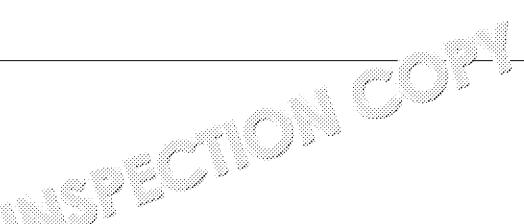
INSPECTION COPY

COPYRIGHT
PROTECTED

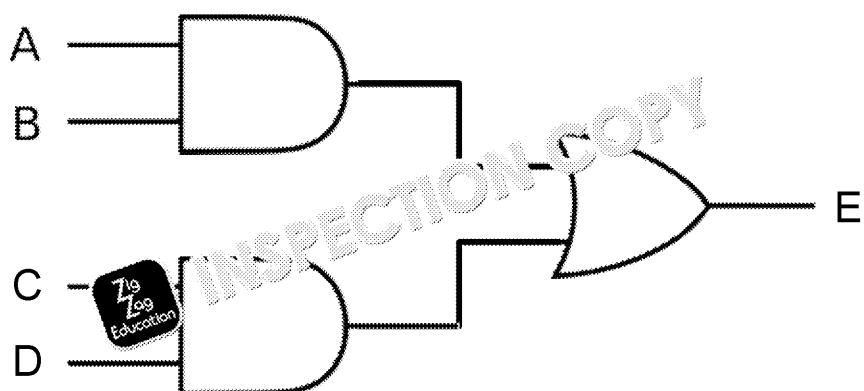
Logic Gates

1. Draw the following logic gates: (3)

AND	OR



2. Complete this truth table for an OR gate. (4)


Input A	Input B	Input Q

3. Draw the logic diagram for this expression. (3)

$(A+B) \cdot C$

A large, diagonal watermark reading "INSPECTION COPY" in a stylized, dotted font.

4. Write a logic statement to represent this logic diagram. (3)

**COPYRIGHT
PROTECTED**

Boolean Algebra

Simplify the following showing each step:

1. $(A + B) \cdot (A + \bar{B})$ (4)

INSPECTION COPY

2. $\bar{P} \cdot \bar{Q} \cdot R + \bar{P} \cdot \bar{Q} \cdot \bar{R} + P \cdot R$ (3)

INSPECTION COPY

3. Which of following statements will simplify to the same expression? (2)

A.1 A. \bar{A} A.A A+1

INSPECTION COPY

4. Which of following is not a statement of De Morgan's Theory? (1)

$A+B = \bar{A} \cdot \bar{B}$ $\bar{A} \cdot \bar{B} = A + B$ $\bar{A} \cdot \bar{B} = \bar{A} + \bar{B}$

INSPECTION COPY

5. Simplify the following using De Morgan's Theory. (3)

$(X + Y) \cdot (Y + Z)$

INSPECTION COPY

**COPYRIGHT
PROTECTED**

Sorting Algorithms

1. Show the list below at each stage of sorting using the bubble sort algorithm.

45, 32, 2, 78, 5, 9

2. Show the list below at each stage of sorting using the insertion sort algorithm.

45, 32, 2, 78, 5, 9

3. Show the list below at each stage of sorting using the quick sort algorithm.

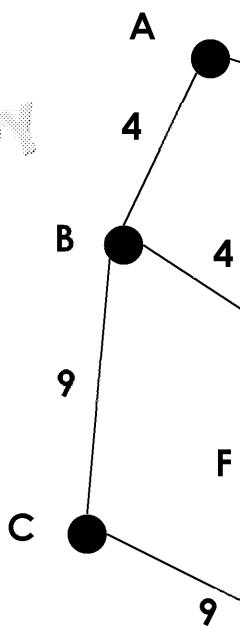
45, 32, 2, 78, 5, 9

INSPECTION COPY

COPYRIGHT
PROTECTED

Searching Algorithms

1. Explain how the linear search algorithm works. (2)


2. How many comparisons would be needed to find the value 23 in the list

5, 9, 11, 15, 23, 17, 12, 8, 31

3. Use Dijkstra's shortest path algorithm to find the shortest path between vertex A and the other vertices on the graph below. (8)

Node	Shortest Distance from Vertex A	Previous Node

4. What is the shortest path between vertex A and vertex G? (1)

5. What is the shortest path between vertex A and vertex E? (1)

INSPECTION COPY

COPYRIGHT
PROTECTED

Tracing an Algorithm

Program A		Program B	
01	A = 1	01	C = 0
02	B = 5	02	WHILE C < 3
03	IF A > B THEN	03	OUTPUT
04	OUTPUT A	04	C = C + 1
05	ELSE	05	END WHILE
06	OUTPUT B		
07	END IF		

1. Trace Program A by completing the trace table below. (6)

Line	A	B	OUTPUT	Comments

2. Trace Program B by completing the trace table below. (14)

Line	C	OUTPUT	Comments

INSPECTION COPY

COPYRIGHT
PROTECTED

Data Compression

1. Below is an image encoded in binary. Apply run-length encoding to each row.

1	1	0	1	1
1	1	0	1	1
0	0	0	0	0
1	1	0	1	1
1	1	0	1	1

→
→
→
→
→

2. Apply run-length encoding (RLE) to this string of text: (1)

CCCCCLLLLLQQQPPPP

INSPECTION COPY

3. Suggest possible codes that could be used to represent each line of the dictionary-based compression. (5)

1	1	0	1	1
1	1	0	1	1
0	0	0	0	0
1	1	0	1	1
1	1	0	1	1

→
→
→
→
→

4. State one advantage and one disadvantage of lossy compression compression.

Advantage:	Disadvantage:

**COPYRIGHT
PROTECTED**

Sequence and Selection

Program A		Program B	
01	INPUT A, B	01	INPUT A, B
02	Total = A + B	02	IF A == B THEN
03	Average = Total / 2	03	OUTPUT
04	OUTPUT Average	04	ELSE IF A > B
		05	OUTPUT
		06	ELSE
		07	OUTPUT
		08	END IF

1. Which one of the two programs shown above is an example of a sequence?

2. Give the line number of a statement from the program you identified in question. (1)

3. Identify the different variables that are used in Program A. (3)

4. Which one of the two programs shown above is an example of selection?

5. Give the line numbers of the conditions from the program you identified in question. (2)

6. Write the meaning of each of the comparison operators shown in table.

Operator	Meaning
>	
<	
>=	
<=	
=	
<>	

**COPYRIGHT
PROTECTED**

Repetition

Program A		Program B	
01	INPUT Num	01	Password = "
02	FOR i = 1 to Num	02	WHILE Password ≠ "
03	OUTPUT i	03	INPUT Password
04	NEXT i	04	END WHILE
		05	OUTPUT "Password correct"

1. Which one of the two programs shown above features an example of a REPEAT UNTIL loop? (1)

2. Give the line number of the condition from the program you identified in question 1. (1)

3. Which one of the two programs shown above features an example of a WHILE loop? (1)

4. Describe the purpose of Program A. (3)

5. Describe the purpose of Program B. (3)

6. Explain the difference between REPEAT UNTIL and WHILE loops. (3)

7. Rewrite Program A using a WHILE loop. (3)

INSPECTION COPY

COPYRIGHT
PROTECTED

Subroutines

Program A	Program B	Program C
01 areaCalc(W, H)	01 average(A, B, C)	01 average(A, B, C)
02 Area = W * H	02 Total = A + B + C	02 Total = A + B + C
03 OUTPUT Area	03 Average = Total / 3	03 Average = Total / 3
04 END	04 PRINT Average	04 PRINT Average
05 areaCalc(10, 8)	05 END	05 END
	7.1 average(4, 3, 4)	7.1 average(4, 3, 4)

1. Identify the program that contains a function from the three shown above.

2. Identify the parameters that are defined in Program B. (3)

3. Identify the arguments that are passed to the areaCalc subroutine in Program A.

4. Identify the arguments that are passed to the compare subroutine in Program B.

5. What would be the output of the areaCalc subroutine based on the call:

6. What would be the output of the compare subroutine based on the call:

7. Describe the difference between a procedure and a function. (2)

INSPECTION COPY

COPYRIGHT
PROTECTED

Mathematical Operations

1. Which symbol is used to represent the exponent operator? (1)

2. Describe the function of the DIV operator. (2)

3. Describe the function of the MOD operator. (2)

4. State the output that will be produced by the following algorithm in each case.

```
01 IF Num MOD 2 > 0 THEN
02     OUTPUT "Valid"
03 ELSE
04     OUTPUT "Invalid"
05 END IF
```

Num = 15	
Num	
Num = 27	

5. State the output that will be produced by the following algorithm when the values of Num1 and Num2 are as shown.

```
01 INPUT Num1
02 INPUT Num2
03 Result = Num1 DIV Num2
04 OUTPUT Result
```

Num1 = 7	
Num2 = 2	
Num1 = 20	
Num2 = 3	
Num1 = 12	
Num2 = 4	

INSPECTION COPY

COPYRIGHT
PROTECTED

Binary and Hexadecimal

1. Convert the decimal number 45 into binary. (2)

128	64	32	16	8	4	2	1

2. Convert the binary number 11010101 into decimal. (2)

INSPECTION COPY

3. Convert the decimal number 165 into hexadecimal. (2)

4. Convert the hexadecimal number B6 into decimal. (2)

INSPECTION COPY

5. Convert the hexadecimal number 9B into binary. (2)

6. Convert the binary number 10010010 into hexadecimal. (1)

INSPECTION COPY

INSPECTION COPY

**COPYRIGHT
PROTECTED**

Data Types

1. Select a suitable data type for each of the variables shown in the table.

Variable	Example Data	Data Type
ProductID	64	
ProductName	"Wholemeal Bread"	
InStock	TRUE	
Price	1.50	

2. Calculate the storage requirements for the example data shown below.

Variable	Data	Storage Requirements
ProductID	64	
ProductName	"Wholemeal Bread"	
InStock	TRUE	
Price	1.50	
ProductID	19	
ProductName	"Milk"	

3. An array is needed to store the average Computer Science test scores over 10 weeks. Select a suitable data type for the data stored in the array. Justify your choice.

4. The array mentioned in the previous question stores the average scores over 10 weeks. Calculate the storage requirements for the entire array and give your answer.

INSPECTION COPY

**COPYRIGHT
PROTECTED**

Binary Arithmetic

Complete the following calculations (give your answers using 5 bits). (24)

1. 0111

0101 +

2. 0101

0111 +

3. 1011

0111 +

4. 1011

0011 +

5. 1011

1011 +

6. 0111

1010 +

7. 0111

0111 ×

8. 1101

0111 ×

9. 1011

1111 ×

10. 1011

0101 ×

11. 1011

1001 ×

12. 0111

1000 ×

INSPECTION COPY

COPYRIGHT
PROTECTED

Negative Numbers

1. Convert this sign and magnitude binary integer to decimal. (2)

10110110

2. Convert this sign and magnitude binary integer to decimal. (2)

00110010

3. Convert this two's complement binary integer to decimal. (2)

10110110

4. Convert this two's complement binary integer to decimal. (2)

00110010

5. Convert this decimal number to an 8-bit two's complement binary integer.

-122

6. Convert this decimal number to an 8-bit two's complement binary integer.

72

7. Convert this decimal number to an 8-bit two's complement binary integer.

-98

Complete the following calculations. (6)

8.
$$\begin{array}{r} 0111 \\ - 0101 \\ \hline \end{array}$$

9.
$$\begin{array}{r} 1101 \\ - 0111 \\ \hline \end{array}$$

10.
$$\begin{array}{r} 0011 \\ - 0111 \\ \hline \end{array}$$

INSPECTION COPY

COPYRIGHT
PROTECTED

Floating Point Numbers

1. Convert this floating-point binary number to decimal: (2)

0	•	1	0	1	0
---	---	---	---	---	---

Mantissa

0	0	1	0
---	---	---	---

Exponent

0	0	1	0
---	---	---	---

2. Convert this floating-point binary number to decimal: (2)

1	•	1	0	1	1
---	---	---	---	---	---

Mantissa

0	0	1	1
---	---	---	---

Exponent

0	0	1	1
---	---	---	---

3. Represent this decimal number using floating-point binary, using 8 bits for the exponent: (2)

-4.5

0	0	1	1	0	0	0	1
---	---	---	---	---	---	---	---

4. The decimal value 17.27 has been represented as 17.25. Calculate the absolute and relative error.

Absolute:

Relative:

0	0	1	1	0	0	0	1
---	---	---	---	---	---	---	---

5. Normalise this floating-point binary number: (2)

1	•	1	0	1	1	0
---	---	---	---	---	---	---

Mantissa

0	1	0
---	---	---

Exponent

0	0	1	1	0	0	0	1
---	---	---	---	---	---	---	---

6. Normalise this floating-point binary number: (2)

0	•	0	1	1	0
---	---	---	---	---	---

Mantissa

0	0	1
---	---	---

Exponent

0	0	1	1	0	0	0	1
---	---	---	---	---	---	---	---

INSPECTION COPY

COPYRIGHT
PROTECTED

Relational Databases

An exam board uses a database to store the results of each exam for each student. The database has three tables: Student, Exam and Result.

1. Details of the three tables are displayed below. Underline the correct field for each table. (3)

Student (StudentID, Forename, Surname, School, Gender, Date of Birth)

Exam (ExamID, ExamName, Subject, Level)

Result (ResultID, StudentID, RawMark, Grade)

2. Draw the correct relationships between each of the tables. (2)

Exam

Student

Result

3. Which part of a database stores all the data about one object or person?

Student (StudentID, Forename, Surname, School, Gender, Date of Birth)

4. Underline the foreign keys used in the database. (2)

Student (StudentID, Forename, Surname, School, Gender, Date of Birth)

Exam (ExamID, ExamName, Subject, Level)

Result (ExamID, StudentID, RawMark, Grade)

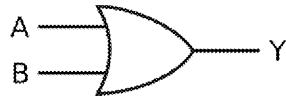
INSPECTION COPY

COPYRIGHT
PROTECTED

Answers

Arrays and Records

1. Steven
2. Ian
3. names[4]
4. names[6]
5. 1 mark for correctly initialising the names array, 1 mark for using " " around the names
 $\leftarrow \text{[``Susan'', ``Ian'', ``Barbara'', ``Steven'', ``Ben'', ``Polly'']}$
6. 1 mark for using the correct range, 1 mark for using the counter variable (i) to value the names array, 1 mark for correct indentation


```
FOR i ← 0 to 6
    OUTPUT names[i]
NEXT i
```
7. 58
8. 57
9. scores[0][1]
10. Scores[3][2]
11. 1 mark for initialising the scores array, 1 mark for initialising it as a 2D array
 $\leftarrow [[45, 71, 34, 55], [23, 82, 57, 37], [18, 31, 53, 57], [44, 66, 22, 33]]$
12. All elements in an array must be of the same data type (1) whereas each field has a different data type (1).

Logic Gates

1. AND gate:

2. OR gate:

2. 1 mark for each correct line:

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

3. 1 mark for each correctly placed symbol:

4. $E = (A \cdot B) + (C \cdot D)$

One mark for $(A \cdot B)$.

One mark for $(C \cdot D)$.

One mark for the + symbol.

**COPYRIGHT
PROTECTED**

Boolean Algebra

1. $A \cdot A + A \cdot \bar{B} + B \cdot A + B \cdot \bar{B}$ (1 mark for each step)

$$A + A \cdot B + \bar{B} \cdot A$$

$$A + A$$

$$A$$

2. $P \cdot R + P \cdot \bar{R}$ (1 mark for each step)

$$R + R$$

$$R$$

3. $A \cdot 1$ (1 mark) $A \cdot A$ (1 mark)

4. $\overline{A \cdot B} = \overline{A} + \overline{B}$

5. $(X + Y + Z) \cdot (\bar{X} + \bar{Y} + \bar{Z})$ (1 mark for initial use of De Morgan)

$$(\bar{X} \cdot \bar{Y}) + (\bar{Y} \cdot \bar{Z})$$
 (1 mark for repeated use of De Morgan)

$$\bar{Y} \cdot (\bar{X} + \bar{Z})$$
 (1 mark for final answer)

Sorting Algorithms

1. 1 mark per correct row:

45	32	2	78	5	9
32	45	2	78	5	9
32	2	45	78	5	9
32	2	45	5	78	9
32	2	45	5	9	78
2	32	45	5	9	78
2	32	5	45	9	78
2	32	5	9	45	78
2	5	32	9	45	78
2	5	9	32	45	78

2. 1 mark per correct row:

45	32	2	78	5	9
32	45	2	78	5	9
32	2	45	78	5	9
2	32	45	78	5	9
2	32	45	5	78	9
2	32	5	45	78	9
2	5	32	45	78	9
2	5	32	45	9	78
2	5	32	9	45	78
2	5	9	32	45	78

3. 1 mark per correct row:

45	32	2	78	5	9
2	5	9	45	32	78
2	5	9	32	45	78

INSPECTION COPY

COPYRIGHT
PROTECTED

Searching Algorithms

1. Searches each element starting at the start of the list (1) until it finds a match
2. 1
3. One mark per correct row

Node	Shortest Distance from vertex A	Previous Node
A	0	
B	4	
C	13	B
D	15	F
E	7	H
F	11	G
G	8	B
H	5	A

4. A - B - G
5. A - H - G

Tracing an Algorithm

1. Award 1 mark for each correct line:

Line	A	B	OUTPUT	Comment
01	1			
02		5		
03				FALSE, go to line 05
05				
06			5	
07				

2. Award 1 mark for each correct line:

Line	C	C	Comment
01			
02			TRUE, go to line 03
03		0	
04	1		
05			Return to line 02
02			TRUE, go to line 03
03		1	
04	2		
05			Return to line 02
02			TRUE, go to line 03
03		2	
04	3		
05			Return to line 02
02			FALSE, end of loop

Data Compression

- 1 mark per row

1	0	1	1
1	1	0	1
0	0	0	0
1	1	0	1
1	1	0	1

- 2(1), 1(0), 2(1)
- 2(1), 1(0), 2(1)
- 5(0)
- 2(1), 1(0), 2(1)
- 2(1), 1(0), 2(1)

INSPECTION COPY

COPYRIGHT
PROTECTED

2. 5(C), 5(L), 3(Q), 4(P)
 3. 1 mark for each row; accept any two suitable values:

1	1	0	1	1
1	1	0	1	1
0	0	0	0	0
1	1	0	1	1
1	1	0	1	1

→ 00
 → 00
 → 01
 → 00
 → 00

4. Advantage: lossy compression results in significantly smaller files.
 Disadvantage: permanently destroys some of the data.

Sequences

1. Program A
 2. Any line from Program A
 3. A, B and Average
 4. Program B
 5. 02 and 04 (from program B)
 6. 1 mark per correct row:

Operator	Meaning
>	Greater than
<	Less than
>=	Greater than or equal to
<=	Less than or equal to
=	Equal to
<>	Not equal to

Repetition

1. Program B
 2. Line 3
 3. Program A
 4. It asks the user to input a number (1) and uses a FOR loop (1) to output the user inputted (1).
 5. The value of the password variable is set to 'none' (1). A WHILE loop is used to input their password (1) until they enter the value 'turing' at which point it ends (1).
 6. In a WHILE loop the condition is tested at the start, whereas in a REPEAT loop the condition is tested at the end (1). A WHILE loop repeats until the condition is TRUE, whereas a REPEAT loop the condition is FALSE (1). In a WHILE loop the statements may never be executed if the condition is FALSE (1). In a REPEAT loop the statements will always be executed at least once (1).
 7. Award 1 mark for each of the following (also refer to the example below):

- The user is asked to input a number.
- The counter (i) has been initialised (correctly) (value = 1) before the loop.
- The condition is correct.

Example:

```
01 TELL ME
02 INPUT i
03 WHILE i <= Num
04   OUTPUT i
05   i = i + 1
06 END WHILE
```

INSPECTION COPY

COPYRIGHT
PROTECTED

Subroutines

1. Program B
2. A, B and C
3. 10 and 8
4. 6 and 4
5. 80
6. 6
7. A procedure is a subroutine that does not normally return a value (1), whereas a function returns values to the calling routine (1).

Mathematical Conversions

1. 8×10^3
2. To perform a division operation (1) and return an integer (whole number) (1)
3. To perform a division operation (1) and return the remainder (1)
4. "Invalid" / "Valid" / "Valid"
5. $3 / 6 / 11$

Binary and Hexadecimal

1. 00101101 (1 mark for the correct answer and 1 mark for working)
2. 101 (1 mark for the correct answer and 1 mark for working)
3. A5 (1 mark for the correct answer and 1 mark for working)
4. 182 (1 mark for the correct answer and 1 mark for working)
5. 10011011 (1 mark for the correct answer and 1 mark for working)
6. 92 (1 mark for the correct answer and 1 mark for working)

Data Types

1. One mark per row.

Variable	Sample Data	Data Type
ProductID	64	Integer
ProductName	"Wholemeal Bread"	String
InStock	TRUE	Boolean
Price	1.50	Real

2. One mark per row:

Variable	Data	Storage Requirements
ProductID	64	2 or 4 bytes
ProductName	"Wholemeal Bread"	15 bytes
InStock	TRUE	1 bit
Price	1.50	4 or 8 bytes
ProductID	19	2 or 4 bytes
ProductName	"Milk"	4 bytes

3. Real (1) because the average scores may have a fractional part/decimal place (1)
4. $10 \times 4 = 40$ bytes / $10 \times 8 = 80$ bytes

Binary Arithmetic

(1 mark for the correct answer and 1 mark for working)

1. 01110000
2. 01100000
3. 01001000
4. 01110000
5. 01011000
6. 01000110
7. 110001
8. 1011011
9. 10100101
10. 110111
11. 1100011
12. 111000

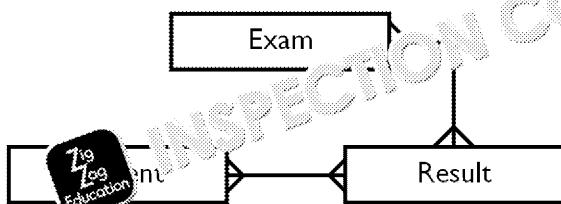
Negative Numbers

(1 mark for the correct answer and 1 mark for working)

1. -54	6. 01001000
2. 50	7. 10011110
3. -74	8. 0010
4. 50	9. 0110
5. 10000110	10. 1100

Floating Point Numbers

- 2.5 (1 mark for the correct answer and 1 mark for working)
- 13.0 (1 mark for the correct answer and 1 mark for working)
- Mantissa: 0.0111000 Exponent: 0011
- Absolute: 0.02 Relative: 0.001158
- Mantissa: 0.110110 Exponent: 0101
- Mantissa: 0.110 Exponent: 0001


Relational Databases

- One mark for each primary key

Student (StudentID, Forename, Surname, School, Gender, Date)
Exam (ExamID, ExamName, Subject, Level)
Result (ExamID, StudentID, RawMark, Grade)

Note: ExamID and StudentID combined form the unique identifier for the result table.

- One mark for each correct relationship:

- Record

- 1 mark for each correctly identified foreign key

Student (StudentID, Forename, Surname, School, Gender, Date)
Exam (ExamID, ExamName, Subject, Level)
Result (ExamID, StudentID, RawMark, Grade)

INSPECTION COPY

COPYRIGHT
PROTECTED

