Recommended Time: 40 minutes

1) **Integrate** the following

b)
$$\int \sec^2 x \, \mathrm{d}x$$

c)
$$\int \sin(3x+5) \, \mathrm{d}x$$

d)
$$\int xe^x dx$$

e)
$$\int x \sin x \, dx$$

f)
$$\int \frac{\ln x}{x} \, \mathrm{d}x$$

Hint: use the substitution u = lnx

g)
$$\int x^5 e^{x^6} \, \mathrm{d}x$$

Hint: use the substitution $u = x^6$

Integrate the following: 2)

a)
$$\int_{0}^{\frac{\pi}{4}} x^3 \sin(x^4) \, \mathrm{d}x$$

a) $\int_{0}^{\frac{\pi}{4}} x^{3} \sin(x^{4}) dx$ Hint: use the substitution $u = x^{4}$

$$\int_{0}^{\frac{\pi}{4}} (1+\sin x) \, \mathrm{d}x$$

b) $\int_{4}^{\frac{\pi}{4}} (1+\sin x) dx$ Leave your answer **exactly**, using surds and π

(3)

6

3) **Integrate** the following:

 $\int e^x \sin x \, dx$ Hint: integrate by parts twice to get back to the original integral

(5)

b)
$$\int \sin x \cos^3 x \, dx$$

 $\int \sin x \cos^3 x \, dx \qquad Hint: use the substitution u = \cos x$

(3) 8

By considering $\ln x$ as $1 \times \ln x$ show that $\int \ln x \, dx = x \ln(x) - x + C$ 4) Hint: Integrate by parts.

(3)

Use the result in a) to integrate the following:

b)
$$\int \ln x^2 dx$$
 Hint: this question should take no more than 30 seconds! (1)

c)
$$\int (\ln x)^2 dx$$
 Hint: integrate by parts using the fact that $\int \ln x dx = x \ln(x) - x$

(2) **{32}**