OCR Practice GCSE Examination Paper Higher Set 6 Paper 5 Non-Calculator

Solutions

Q <u>u</u> Nº	Answer	Solutions	Marks		Spec.	
1		Convert to improper fractions:				
		$2\frac{2}{3} \times \frac{5}{6}$ [multiply whole number]	by the			
		l denominator & add to th	ne numerator]			
		$= \frac{(2\times3) + 2}{3} \times \frac{5}{6} $ [simplify]		M1		
		$=\frac{8}{3}\times\frac{5}{6}$	M1			
		[multiply numerators together & multiply der	nominators together]			N2
		$\left \frac{8}{3} \times \frac{5}{6} = \frac{(8 \times 5)}{(3 \times 6)} = \frac{40}{18}\right $		M 1 multiplying		N8
			atar by the denominator	 		
		[convert to mixed number by dividing numer $40 \div 18 = 2$ remainder 4	ator by the denominator			
		[write the whole number and write remainde	r over the denominator]			
		$\frac{40}{18} = 2\frac{4}{18}$ [simplify fraction	on]			
	$2\frac{2}{9}$	$\begin{vmatrix} 18 & 18 \\ = 2\frac{4 \div 2}{18 \div 2} = 2\frac{2}{9} \end{vmatrix}$		A1 mixed number only		
2	9				4	
2		2 numbers which add to make 0 and multiply $8 + -8 = 0$; $8 \times -8 = -64$	/ to make —64:	M1		A4
	(x-8)(x+8)	So, $x^2 - 64 = (x - 8)(x + 8)$		A1	2	7.4
3		The recommended retail price of the table ha	as been reduced by $\frac{4}{3}$			
			,			
		$1 - \frac{4}{7} = \frac{3}{7}$; £42 is $\frac{3}{7}$ of the recommended	retail price of the table	M1		
		$\frac{1}{7}$ of the recommended retail price is 42 ÷	3 = £14			R3
				M1		
		The recommended retail price of the table is	14 × 7	M1		
	£98	= £98		A1	4	
4			at x is directly proportional to			
		y. The graph is a stra	aight line through the origin;			R10
		if x increases, y in proportion.	creases by the same			IVIO
	Α	x proportion.		A1	1	
5a		P(passing 1 test only) = P(passing 1 test only)	• • • • • • • • • • • • • • • • • • • •			
		/		M1		P8
b	0.46	= 0.46 Or:		A1		
D		P(passing at least 1 test) P(pass	ing at least 1 test)			
		$= 1 - P(\text{not passing either test}) $ $= 1 - (0.3 \times 0.4) = 1 - 0.12$ $= P(\text{passing both tests}) + P(\text{passing 1st test only}) + P(\text{passing 2}^{\text{nd}} \text{ test only})$				
						P8
			\times 0.6) + (0.7 \times 0.4) + 0.6) = 0.42 + 0.28 + 0.18	M 1		
	0.88	= 0.88	0.0j - 0.42 + 0.20 + 0.10	A1	4	
	0.00		/ \ 1	7		

Q <u>u</u> Nº	Answer	Solutions	Marks		Spec.
6		$\mathbf{a} - 2\mathbf{b} = \begin{pmatrix} -2 \\ 6 \end{pmatrix} - 2 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$	M1		
		$= \begin{pmatrix} -2 \\ 6 \end{pmatrix} - \begin{pmatrix} 2 \times 3 \\ 2 \times 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \end{pmatrix} - \begin{pmatrix} 6 \\ 4 \end{pmatrix}$	M1		G25
	$\begin{pmatrix} -8\\2 \end{pmatrix}$	$= \begin{pmatrix} -2-6 \\ 6-4 \end{pmatrix} = \begin{pmatrix} -8 \\ 2 \end{pmatrix}$	A1	3	
7		The isosceles triangle can be divided into 2 identical right-angled triangles:			
		4 cm			
	'Show That' Q ^U working must be shown	The length of the base of one right-angled triangle can be found by using Pythagoras' theorem: $a^2 + b^2 = c^2$ where a and b are sides of the right-angled triangle and c is the hypotenuse. The length of the base of the isosceles triangle is 2 × the length of the base of the right angled triangle.			G20 G9
		One side of a right-angled triangle is 4 cm long The hypotenuse of the right-angled triangle is 5 cm long. The other side of the triangle is	M1 $5^2 - 4^2$ M1 $\sqrt{5^2 - 4^2}$		
		The base of the isosceles triangle is $3 \times 2 = 6$ cm The diameter of the circle is 5.8 cm	M1		
		6 cm is more than 5.8 cm : the triangle will not fit inside the circle	A1	4	
8		$\sqrt{8.79 + 1.93 \times 2.29}$ Estimate answer by rounding. e.g. 8. 7 9 \rightarrow 9, 1. 9 3 \rightarrow 2 & 2. 2 9 \rightarrow 2	M1		
		So $\sqrt{8.79 + 1.93 \times 2.29} \approx \sqrt{9 + 2 \times 2}$	M1		N14
		$=\sqrt{9+4}=\sqrt{13}$	M1		
	3.4 – 4	$\sqrt{9} = 3 \& \sqrt{16} = 4 : \sqrt{13} \approx 3.6$	A1	4	
9a		$\frac{2x+1}{x} + \frac{x-7}{6} = 2$ [multiply by 6x]			
		$\frac{6x(2x+1)}{x} + \frac{6x(x-7)}{6} = 2 \times 6x $ [simplify]	M1		
		6(2x+1)+x(x-7)=12x [expand]	M1		
		$ 12x+6+x^2-7x=12x [-12x] x^2-7x+6=0 $	M1		A4 A18
		Factorise into form $(x+a)(x+b)$ where $a+b=-7$, $ab=6$ $(-1)+(-6)=-7$, $(-1)\times(-6)=6$			
		(x-1)(x-6) = 0 $ x-1=0 or x-6=0$	M1 accept other methods		
	x = 1 or x = 6		A1		

Q <u>u</u> Nº	Answer	So	lutions	Marks		Spec.
b		4x+3y=23 $3y=23-4x$ $9y=69-12x$	[rearrange for $3y$] [$\times 3$]	M1 rearrange		
		$2x^{2} - 9y = 41$ $2x^{2} - (69 - 12x) = 41$	[substitute for 9y] [simplify]	M1 eliminate one variable		
		$2x^{2} + 12x - 110 = 0$ $x^{2} + 6x - 55 = 0$		A1 simple quadratic		A4
		(x+11)(x-5)=0 x+11=0 or x-5=0	[divide by either bracketed term]	M1 factorise (accept quad. formula)		A19
	11 67	x = -11 or x = 5 3y = 23 - 4x $3y = 23 - 4 \times (-11) = 67 \text{ or } 3y$	[substitute x values]	A1		
	$x = -11, y = \frac{67}{3}$ or $x = 5, y = 1$	$y = \frac{67}{3}$ or $y = 1$		M1 A1	12	
10a		PQR and PST are mathematically s $\therefore \frac{ST}{QR} = \frac{PS}{PQ}$	imilar, ∴ sides are proportional [substitute in side lengths]	M1 similar triangles		
		$\frac{ST}{15} = \frac{78 + 26}{26} = \frac{104}{26} = 4$	[× 15]	M1		G19
	60 km	ST = 60 km		A1		
b	No, captain is not correct [with reason]	QS This will create a triangle that is a	nal bearing, then another 30° towards reflection of PQR in the line QR he line QS it will only be 26 km from Q,	A1 any valid point (angle incorrect or lengths different)	4	G15

Time, t (minutes) $t \le 5$ $t \le 8$ $t \le 10$ $t \le 12$ $t \le 15$ A1 at least 2 other correct A1 at values correct b $t \le 5$ $t \le 8$ $t \le 10$ $t \le 12$ $t \le 15$ A1 at least 2 other correct A1 at values correct b $t \ge 7$ $t \ge 10$	Q <u>u</u> Nº	Answer	Answer Solutions						Spec.	
S3 A1 all points platted correctly frequency 30 Compared by 10 A1 all points platted accreetly 10 A1 care or snaph the logarith insury plated parets 20% of the total members is 70 × 0.2 = 14 From the graph, the 14th fastest member ran 7.5 minutes A1 and rand scale correctly located and 10 minutes are not know. The answer given in A1 Any suitable explanation part (c) is based on grouped data. A1 and rand scale correctly located and 12 minutes are not know. The answer given in A1 Area of larger rectangle = $12 \times (x + 3) = 12x + 36$ Area of smaller rectangle = $3 \times \text{area of smaller rectangle}$ $\therefore 12x + 36 = 3(x^2 + 8x) \qquad [+ 3]$ A7 and 10 minutes are not know. The answer given in A1 A8 and A1 and A1 A1 all points platted correctly located accreatly located and scale correctly located and sca	11a	(minutes) Cumulative					1		\$3	
20% of the total members is $70 \times 0.2 = 14$ M1 7.5 minutes From the graph, the 14^{th} fastest member ran 7.5 minutes A1 e.g. the exact times of the members are not know. The answer given in part (c) is based on grouped data. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	b	60 50 40 Cumulative Frequency 30 20 10 0 4 8 12 16 20					A1 all points plotted correctly A1 curve or straight line segments through plotted points A1 axis and scale correctly		\$3	
Any suitable explanation part (c) is based on grouped data. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	С	7.5 minutes	_	0% of the total members is 70 \times		tes				
Area of smaller rectangle $= x \times (x+8) = x^2 + 8x$ Area of larger rectangle $= 3 \times$ area of smaller rectangle $\therefore 12x + 36 = 3(x^2 + 8x) \qquad [\div 3]$ $4x + 12 = x^2 + 8x \qquad [\text{gather terms on one side}]$ $x^2 + 4x - 12 = 0 \qquad [\text{factorise}] \qquad \text{A1 quadratic}$ $(x+6)(x-2) = 0 \qquad [\text{divide by either term}] \qquad \text{M1 factorisation}$ $x+6=0 \text{ or } x-2=0$ $x=-6 \text{ or } x=2 \qquad \text{A1}$ $x \text{ cannot be } -6 \text{ as dimensions must be positive, } \therefore x=2 \qquad \text{B1}$ Substitute into expressions for dimensions of smaller rectangle: $(x+8) = 2+8 = 10 \text{ cm}$ $x=2 \text{ cm}$	-	Any suitable expla		•	s are not know. The	e answer given in	A1	8	S3	
	12			rea of smaller rectangle $= x \times (x)$ rea of larger rectangle $= 3 \times$ are $(x, 12x + 36) = 3(x^2 + 8x)$ $(x^2 + 4x - 12) = 0$ $(x^2 + 4x - 12) = 0$ $(x^2 + 6)(x^2 - 2) = 0$ cannot be $(x^2 + 8)(x^2 - 2) = 0$	$(+8) = x^2 + 8x$ a of smaller rectang [\div 3] $[\text{gather terms}]$ $[\text{factorise}]$ $[\text{divide by eith}]$ $(+3) = x^2 + 8x$ $(+3) = x^2 +$	on one side] er term] = 2	M1 A1 quadratic M1 factorisation A1 B1			

Q <u>u</u> Nº	Answer	Solutions	Marks	Spec.
13a	$y = x^2 + 3x - 6$			
	x -5 -	4 -3 -2 -1 0 1 2 3		A2
	y 4 -	2 -6 -8 -8 -6 - 2 4 12	A1 at least 3 correct	, LE
			A1 all correct	
b		-6 4 -2 0 2 4 -4 -12 -12	M1 points correctly plotted A1 parabola drawn connecting points	A14
С	x = -4.4 & x = 1.3	The roots of $y = x^2 + 3x - 6$ are the x intercepts of the graph The roots are $x = -4.4$ & $x = 1.3$	A1 allow ±0.1	A11
d	x = -4.5 and $x = 1.5$	Solutions to the equation $x^2 + 3x - 6 = 1$ are the x co-ordinates where the line $y = 1$ crosses the graph of $y = x^2 + 3x - 6$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	M1 drawing line at $y = 1$ A1 allow ± 0.1	A11
14a		Reasons for each statement must be given		
	'Prove That' Q <u>□</u>	Angle AED = angle ABC = 90° [given] [angle] Ange CAB = angle DAE [common angle] [angle]	M1	63
	Reasoning must be	Angle ADE = angle BCD [corresponding angles] [angle]	M1	G3 G7
	shown	All three angles in each triangle are the same ∴ triangle ADE is similar to triangle ABC by AAA (angle angle angle)	A1	
b		Triangle ADE is similar to triangle ABC ∴ the lengths of their		
		corresponding sides are in the same ratio The ratio of their side lengths is $9 \div 3 = 3$	M1	R12
		The length of AB is 4.2 $ imes$ 3	M1	1112
	12.6 cm	= 12.6 cm	A1 6	

Q <u>u</u> Nº	Answer			(Solutions				Marks		Spec.
15		the turning po	a completed the square form $(y = (x + c)^2 + d)$, the coordinates of the turning point are $(-c, d)$ the turning point is $(5, 9)$, the quadratic is $y = (x - 5)^2 + 9$						M1		
		In the form y $y = (x - 5)$	$= x^2 + a$	ax + b,					M1		A11
		$y = x^2 - 10.$	x + 25 +	9 [si	implify]				M1		
	a = -10 & b = 34	$y = x^2 - 10.$ $a = -10 \& b$							A1	4	
16a		There are 4 d The sections			1, 2, 3 &	4					P3
	$\frac{1}{4}$	$P(4) = \frac{1}{4}$							A1		
	Any two from: There are three different he total number of oute the probability is $\frac{3}{16}$	•	•	2 (4 × 1	= 4; 1 ×	4 = 4; 2	× 2 = 4)		A1 at least 1 correct A1 2 correct		P2
ii		The sample s two spinners	pace diag	ıram show	s all of th	e possible	outcomes	for the			
		, i	×	1	2	3	4				
			1	1	2	3	4				
			2	2	4	6	8				
			4	4	8	12	16				P7
			6	6	12	18	24		M1 total outcomes = 16 M1 sample space/ listing		
		There are $4 \times 4 = 16$ different outcomes in total An outcome of 12 occurs twice					outcomes	-			
	<u>1</u> 8	$P(12) = \frac{2}{16}$		II 3 LWICE					A1	6	

Q <u>u</u> Nº	Answer	Solutions	Marks	Spec.
17		Ratio of masses of sugar is $x:y$ When both masses are increased by 40 g, ratio becomes 1:2 $\therefore x + 40: y + 40 = 1:2$ $\therefore \frac{x+40}{y+40} = \frac{1}{2}$ When both masses are decreased by 15 g, ratio becomes 1:3 $\therefore x-15: y-15=1:3$	M1	
		$\therefore \frac{x - 15}{y - 15} = \frac{1}{3} $ (2)	M1	
		Rearrange (1) to make y the subject: $\frac{x+40}{y+40} = \frac{1}{2} \qquad [\times (y+40)]$ $x+40 = \frac{y+40}{2} \qquad [\times 2]$ $2x+80 = y+40 \qquad [-40]$ $y=2x+40 \qquad (3)$	M1	
		Substitute (3) into (2) to find x: $\frac{x-15}{y-15} = \frac{1}{3}$ [substitute $y = 2x + 40$] $\frac{x-15}{(2x+40)-15} = \frac{1}{3}$ [simplify]		R8 A21
		$\frac{x-15}{2x+25} = \frac{1}{3} $		
		x-45=25 [+45] x=70 Substitute $x=70$ into (3) to find y :	M1	
		y = 2x + 40 [substitute $x = 70$] $y = (2 \times 70) + 40$ [simplify] $y = 140 + 40$ \therefore $y = 180$	M1 substitution of found variable	
	7 : 18	The ratio of masses of sugar is $70:180 = 70 \div 10:180 \div 10$ = 7:18 in its lowest terms	M1 A1	7
18	Ruben is not correct	Reasoning must be given $x^{2} = 36$ $x = \sqrt{36} = \pm 6$		N6 N7
	[with reason]	Ruben is not correct; the answer could be 6 or -6	A1	1

Q <u>u</u> Nº	Answer	Solutions	Marks		Spec.
19a		Convert to improper fractions:			
		$3\frac{1}{5} \times 4\frac{1}{6}$ [multiply whole number by the			
		denominator & add to the numerator]			
		$= \frac{(3\times5)+1}{5} \times \frac{(4\times6)+1}{6}$ [simplify]			
			M1 		
		$=\frac{16}{5} \times \frac{25}{6}$	Mil		
		[multiply the numerators together and the denominators together]	M1		
					N2 N8
		$\frac{16}{5} \times \frac{25}{6} = \frac{(16 \times 25)}{(5 \times 6)}$ [simplify]	M1		NO
		$=\frac{400}{100} = \frac{40}{100}$			
		$={30}={3}$	M1		
		[convert to mixed number by dividing numerator by the denominator]			
		$40 \div 3 = 13$ remainder 1			
	1	[write the whole number and write remainder over the denominator]			
	$13\frac{1}{3}$	$\frac{40}{3} = 13\frac{1}{3}$	A1		
b	$8\frac{4}{5} + 7\frac{6}{9}$ or	Place the biggest numbers (7 and 8) as the whole number in the fractions, and the smallest number (5) as the divisor in the first fraction:			
	$7\frac{4}{5} + 8\frac{6}{9}$	$8\frac{4}{5} + 7\frac{6}{9}$ or $7\frac{4}{5} + 8\frac{6}{9}$			N2
	7 - 7 - 9	5 9 5 9	A1	6	
20		Working must be shown			
		$Speed = \frac{Distance}{Time} :. Distance = Speed \times Time :. Time = \frac{Distance}{Speed}$	M1		
		For the first two hours, Luis drove at an average speed of 60 mph In the first 2 hours, Luis travelled $2 \times 60 = 120$ miles	M1		
		The remaining 100 miles were completed at an average speed of 40			
		mph	M		R11
		This took 100 \div 40 = 2.5 hours The total number of miles travelled was 120 + 100 = 220	M1		
		The total time taken to travel 220 miles was $2 + 2.5 = 4.5$ hours	M1		
		The average speed for the journey was $\frac{220}{4.5}$	M1		
	Luis is not correct	= 48.888 mph	1.1		
	[with working]	48.888 mph < 50 mph ∴ Luis is not correct	A1	6	
		-	Total Marks:	100	