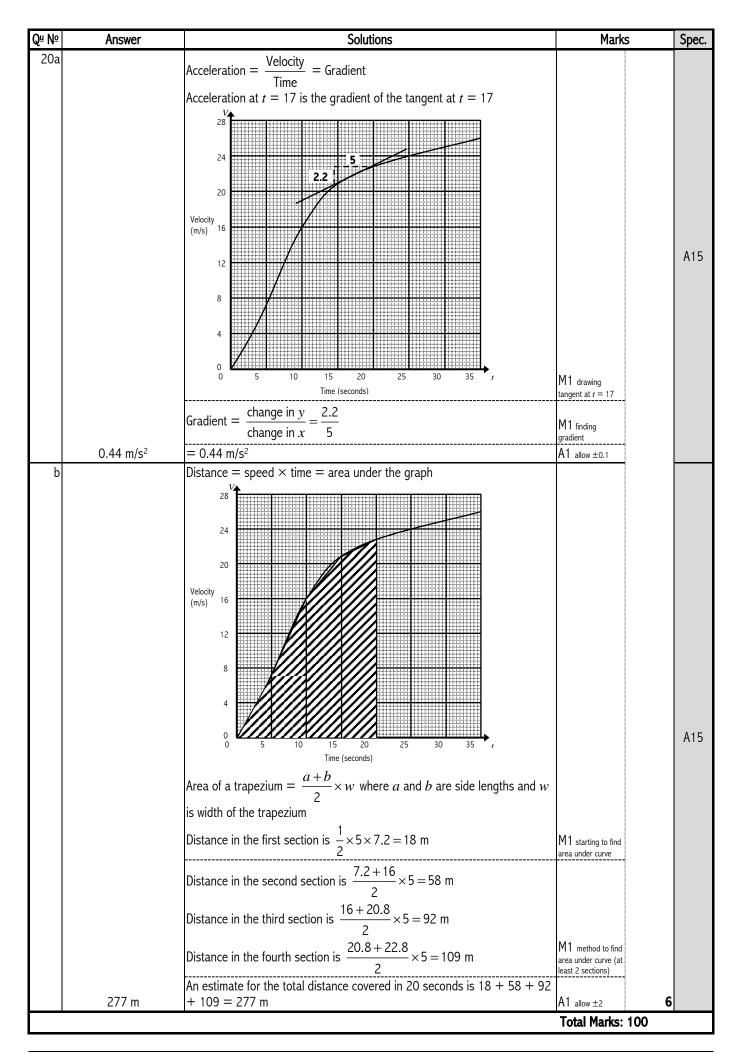
OCR Practice GCSE Examination Paper Higher Set 3 Paper 4 Calculator

Solutions

Q¤ Nº	Answer	Solutions	Marks		Spec.
1a	$\frac{1}{5}$ $\frac{4}{5}$ Not 5	$\frac{\frac{1}{6}}{\frac{5}{6}} = 5$ Not 5 $P(5 \text{ on the spinner}) = \frac{1}{5}$ $P(\text{not a 5 on the spinner}) = 1 - \frac{1}{5} = \frac{4}{5}$ $P(5 \text{ on the dice}) = \frac{1}{6}$ $P(\text{not a 5 on the dice}) = 1 - \frac{1}{6} = \frac{5}{6}$	A1 at least 2 correct A1 all correct		P4 P6
b	1 30	A win is getting a 5 on both the spinner and the dice $P(5 \text{ on the spinner}) = \frac{1}{5}; P(5 \text{ on the dice}) = \frac{1}{6}$ $P(\text{winning}) = \frac{1}{5} \times \frac{1}{6}$ $= \frac{1}{30}$	M1 A1	4	P8
2a	28.1°	$\theta = x$; opposite = 8 cm; adjacent = 15 cm $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$ $\rightarrow \theta = \tan^{-1} \left(\frac{\text{opposite}}{\text{adjacent}} \right)$ $x = \tan^{-1} \left(\frac{8}{15} \right)$ = 28.072 = 28.1° correct to 1 decimal place	M1 M1		G20
b	48.2°	$\theta = y$; adjacent = 8 cm; hypotenuse = 12 cm $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ $\rightarrow \theta = \cos^{-1} \left(\frac{\text{adjacent}}{\text{hypotenuse}} \right)$ $y = \cos^{-1} \left(\frac{8}{12} \right) = \cos^{-1} \left(\frac{2}{3} \right)$ = 48.1896 = 48.2° correct to 1 decimal place	M1 M1 A1	6	G20

Q <u>u</u> Nº	Answer	Solutions			Spec.
3a	7.0 6.0 5.0 Distance (km) 3.0 2.0 1.0 0 8:00 am 8:30 am	Average speed between 8:45 & 9:30 was 5 km/h 8:45 to 9:30 is 45 minutes $= \frac{3}{4} \text{ hour}$ $Speed = \frac{\text{Distance}}{\text{Time}}$ $\rightarrow \text{Distance = Speed} \times \text{Time}$ $\text{Distance travelled between 8:45 & 9:30 is}$ $5 \times \frac{3}{4} = 3.75 \text{ km}$ $$	M1 method to find distance travelled between 8:45 & 9:30 M1 finding total distance travelled between 8:00 & 9:30 A1 graph correct from 8:00 to 8:45 A1 graph correct from 8:05 to 9:30		A14
b	2.4 km/h	10:15 to 10:30 is 15 minutes Steven walked 0.6 km in 15 minutes 15 minutes = $\frac{1}{4}$ hour Speed = $\frac{\text{Distance}}{\text{Time}}$ Average walking speed to coffee shop is $0.6 \div \frac{1}{4}$ = 2.4 km/h	M1 M1 A1	7	R11
4	3.9 cm	Volume of cylinder $= \pi r^2 l$ where r is the radius and l is the length Length of the cylinder is 8 cm; volume of the cylinder is 392 $8\pi r^2 = 392$ $[\div 8]$ $\pi r^2 = 49$ $[\div \pi]$ $r^2 = 15.597$ $[\sqrt{\]}$ $r = 3.949 = 3.9$ cm correct to 1 decimal place	M1 ÷ 8π M1 √	3	G16
5	69 m	$\theta = 72^\circ$; Opposite = Measured height of building; Adjacent = 22 m $\tan (\theta) = \frac{\text{opposite}}{\text{adjacent}}$ $\rightarrow \text{opposite} = \tan (\theta) \times \text{adjacent}$ Measured height of building = $\tan (72^\circ) \times 22 = 67.7$ m Device is placed 1.6 m above ground Total height of building is $67.7 + 1.6$ = $69.3 = 69$ m correct to the nearest metre	M1 M1 M1 A1	4	G20 N15


Q <u>u</u> Nº	Answer	Solutions	Marks		Spec.
6		Working must be shown			
		Let $n = 0.21 = 0.2121212121$			
		100 <i>n</i> = 21.21212121	M1		
	'Prove That' Q ^U working must be shown	100n - n = 21.0000000 $99n = 21$	M1		N10
		21 _ 21÷3 _ 7			
		$n = \frac{21}{99} = \frac{21 \div 3}{99 \div 3} = \frac{7}{33}$			
		$0.\dot{2}\dot{1} = \frac{7}{33}$	A1	3	
7		$3.5 \text{ kg} = 3.5 \times 1000 = 3500 \text{ g}$	M1		
		Volume of sphere $=\frac{3500}{7} = 500 \text{ cm}^3$	M1		
		$\therefore \frac{4}{3}\pi r^3 = 500$	M1 M1 M1 M1 M1 M1 A1 A1 A1 M1 A1 M1 M		
	'Show That' Q <u>∪</u>	$\pi \approx 3 \therefore \frac{4}{3}\pi r^3 \approx 4r^3$			N14
	Working must be shown	3	M1 approximation		G17
		$\therefore 4r^3 \approx 500$	of π		
		$r^3 \approx 125$ [cube root]	M1		
		$r pprox 5 ext{ cm}$	A1		
		Any relevant comment, e.g. 6.5 cm is not accurate even to 1 significant			
		figure, or margin of error is too great to be reliable	A1 oe	6	
8		The possible error in x is 0.05			
		Minimum: 43.7 – 0.05 = 43.65	M1 finding bounds		
		Maximum: $43.7 + 0.05 = 43.75$ The possible error in y is 0.005			
		Minimum: $9.28 - 0.005 = 9.275$			N16
		Maximum: $9.28 + 0.005 = 9.285$			NIO
		Lower bound for z is the minimum value of $x \times$ the minimum value of $y =$	M1 method to find		
		43.65 × 9.275	1		
	404.85375	= 404.85375	A1	4	
9a		n 1 2 3 4 Term 5 13 21 29			
		+8 +8 +8	M1 expression		A24
		The common difference between terms is 8 so find 8n values			A24 A25
		8n 8 16 24 32 -3 -3			
	8 <i>n</i> – 3	The difference between $8n$ values & the terms is -3 , so the n^{th} term is $8n-3$	1		
b	0n-3		expression		
ט		Let first term of sequence = n 4 terms: n , n + 8, n + 16, n + 24			
		Sum of terms = 4	terms algebraically		
		$\therefore n + n + 8 + n + 16 + n + 24 = 4$ [simplify]	M1		A21
		$4n = -44 \ [\div 4]$			A23
		n = -11	A1		
		Substituting <i>n</i> value into terms:	†		
	-11, -3, 5, 13	4 terms are -11, -3, 5, 13	B1	6	

Q <u>u</u> Nº	Answer	Solutions	Marks		Spec.	
10a		$x^2 - x = 30$, so $x^2 - x - 30 = 0$ Factorise into form $(x+a)(x+b)$ where $a+b=-1$, $ab=-30$ $5+(-6)=-1$, $5\times(-6)=-30$ (x+5)(x-6)=0 [divide by either bracketed term]	M1 accept other methods M1 $(x \pm 5)(x \pm 6)$		A4 A18	
	x = -5 or x = 6	x+5=0 or $x-6=0x=-5$ or $x=6$	A1			
b		$2x^{2} + 20x + 54 \qquad [\div 2]$ $= 2(x^{2} + 10x + 27) \qquad [complete the square]$	M1			
	$2(x+5)^2+4$	$= 2(x^2 + 10x + 25 + 2)$ [factorise] = $2(x+5)^2 + 2 \times 2$ [simplify]	Mil		A4	
		$= 2(x+5)^{2} + 4 (a=2, b=5, c=4)$	M1 A1	6		
11		Area of quarter circle $=\frac{1}{4} \times \pi r^2$ [substitute in $r = 11$]	M1			
		$= \frac{1}{4} \times \pi \times 11^{2}$ [simplify] $= \frac{121}{4} \pi \text{ cm}^{2}$	M1			
		Area of rectangle PQRS = $11 \times 20 = 220 \text{ cm}^2$	M1		R9 G17	
		Shaded area = area of PQRS – area of quarter circle = $220 - \frac{121}{4}\pi = 124.966$ cm ²	M1			
		Percentage of PQRS that is shaded = $\frac{124.966}{220} \times 100$	M1			
	56.8%	= 56.8031 = 56.8% (1 dp)	A1	6		
12		Arc length $= 42 = \frac{100}{360} \times 2\pi r$ [rearrange for r]	M1			
		$r = 42 \div \frac{100}{360} \div 2\pi$ [flip fraction]	M1		G17 G18	
	24.1 cm	$= 42 \times \frac{360}{100} \div 2\pi = \frac{42 \times 360}{200\pi}$ = 24.0642 = 24.1 cm (3 sf)	A1	3		

Q <u>u</u> Nº	Answer		Solutions					Spec.
13a	Score, s	<i>s</i> ≤ 30	<i>s</i> ≤ 45	s ≤ 70	s ≤ 100			
	Cumulative Frequency	9	9 + 17 = 26	26 + 23 = 49	49 + 11 = 60	A1		S3
b	50 40 Cumulative Frequency 30 10 0 20	40 Score, s	60 80	100		A1 all points plotted correctly A1 curve or straight line segments through plotted points A1 axis and scale correctly labelled		\$3
С	Any suitable explanation	e.g. Scores be	tween 45 and 70 r	nay not be evenly o	distributed	A1	5	S4
14	214.3	$= \frac{168}{12} = 14$ No. seeds per $\therefore \text{ number of } $ $= \frac{3000}{14}$	ewberries per punn punnet = 3000 seeds per strawber = 214.3 (1 dp)	= 36 000 Number of solution in the second	eeds = 3000 × 12 strawberries = 168 seeds per strawberry = 214.3 (1 dp)	M1 M1	3	R7
15a	Total films = 110 Number of animated films not made in the 21st century = x 110=17+ x +(2 x -3)+ x (x -7) [expand brackets] 110=17+ x +2 x -3+ x ^2-7 x [simplify] x^2 -4 x -96=0 [factorise] $(x$ -12)(x +8)=0 x = 12 or -8 x cannot be negative, $\therefore x$ =12 P (animated film not made in 21st century) = $\frac{12}{110}$ = $\frac{6}{55}$				M1 set up equations M1 quadratic expression M1 factorisation M1		A18 P6 P9	
b	Number of animated films made in the 21st century = $2x - 3$; $x = 12$ $\therefore 2x - 3 = 2(12) - 3 = 24 - 3 = 21$ $P \text{ (animated film from 21st century)}$ $= \frac{\text{Number of animated films made in 21st century}}{\text{Total number of films}} = \frac{21}{110}$					M1 A1	7	P6 P9

Q <u>u</u> Nº	Answer	Solutions	Marks		Spec.
16a		$x_{n+1} = \frac{2x_n^3 - 11}{3x_n^2 + 7}$ $2x^3 - 11 2 \times 1^3 - 11$			
		$x_1 = \frac{2x_0^3 - 11}{3x_0^2 + 7} = \frac{2 \times 1^3 - 11}{3 \times 1^2 + 7} = -0.9$	M1 1st iteration		
		$x_2 = \frac{2x_1^3 - 11}{3x_1^2 + 7} = \frac{2 \times (-0.9)^3 - 11}{3 \times (-0.9)^2 + 7} = -1.32110$	M1 2 nd iteration		400
		$x_3 = \frac{2x_2^3 - 11}{3x_2^2 + 7} = \frac{2 \times (-1.32110)^3 - 11}{3 \times (-1.32110)^2 + 7} = -1.27587$			A20 N15
		$x_4 = \frac{2x_3^3 - 11}{3x_3^2 + 7} = \frac{2 \times (-1.27587)^3 - 11}{3 \times (-1.27587)^2 + 7} = -1.27519$			
		$x_5 = \frac{2x_4^3 - 11}{3x_4^2 + 7} = \frac{2 \times (-1.27519)^3 - 11}{3 \times (-1.27519)^2 + 7} = -1.27519$			
	x = -1.2752	x = -1.2752 to 4 d.p.	A1 cao		
b		$\begin{vmatrix} x^3 + 7x + 11 \\ = (-1.2752)^3 + 7(-1.2752) + 11 \end{vmatrix}$			A2
		= -0.0000474	B1	_	N15
	Any valid comment	e.g. gives 0 to 4 d.p. / answer is suitably close to 0	B1	5	
17		Frequency = frequency density \times class width 16 people waited $80 - 120$ seconds for their call to be answered The class width is $120 - 80 = 40$ The frequency density is $16 \div 40 = 0.4$	M1 M1		
		The <i>y</i> -axis scale increases by 0.05 unit for each grid line, starting from 0. The number of people who waited between 20 and 40 seconds is in one range of $20-40$ seconds Using the scale, the frequency density for the range of $20-40$ seconds is 1.05	M1		S3
		The class width for this range is $40 - 20 = 20$			
	21	The frequency in this range is $1.05 \times 20 = 21$ 21 people waited between 20 and 40 seconds for their call to be answered	M1	5	
18a		On day 1 there were 1500 bacteria in the Petri dish Growth rate of bacteria is assumed to be an increase of 38% per day On day 3 there will be $1500 \times 1.38^2 = 2856.6$ bacteria in the Petri dish	M1 × 1.38 M1 (<i>their</i> 1.38) ² or × 1.38 twice		R16
	2860	2856.6 is 2860 correct to 3 significant figures	A1		
bi		Day 1 = 1500 bacteria Day 2 = 1500 × 1.38 = 2070 bacteria Day 3 = 2070 × 1.38 = 2856.6 bacteria Day 4 = 2856.6 × 1.38 = 3942.108 bacteria Day 5 = 3942.108 × 1.38 = 5440.10904 bacteria Day 6 = 5440.10904 × 1.38 = 7507.35 bacteria Day 7 = 7507.35 × 1.38 = 10360.14 bacteria	M1 method to find when number will exceed 10,000		R16
	Day 7	The number of bacteria exceeds 10,000 on day 7	A1		
ii	Any suitable comment	e.g. if the percentage change is lower, it will take longer for the number of bacteria to exceed 10,000	A1	6	R9

Q <u>u</u> Nº	Answer	Solutions	Marks		Spec.
19a	'Show That' Q ^u working must be shown	Working must be shown If the customer choses 1 flavour and 1 topping, for each of the 18 different flavours, there are 13 different toppings they could choose from. There are $18 \times 13 = 234$ options If the customer choses 1 flavour and 1 sauce, for each of the 18 different flavours there are 7 different sauces they could choose from. There are 18 \times 7 = 126 different combinations If the customer choses 1 flavour, 1 topping and 1 sauce, for each of the 18 different flavours there are 13 different toppings. Foe each of the different flavour and topping combinations, there are 7 sauce options. There are 18 \times 13 \times 7 = 1638 different possible combinations.	M1		N5
		If a customer orders one scoop of ice cream there are 234 + 126 + 1638	M1		
		= 1998 different possible combinations.	A1		
b		There are 1,998 different scoops of ice cream that could be ordered. After one scoop is ordered, each other person has 1,998 scoops to order from, but only 1 is the same as the first person's order. $\therefore P \text{ (second person orders same as first)} = \frac{1}{1,998};$ $P \text{ (third person orders same as first)} = \frac{1}{1,998}$	M1		P8 P9
	1 3,992,004	P (second person and third person order same as first) $= \frac{1}{1,998} \times \frac{1}{1,998} = \frac{1}{1,998^2} = \frac{1}{3,992,004}$	A1	5	

