Edexcel Practice GCSE Examination Paper Higher Set 6 Paper 2 Calculator

Solutions

Q <u>u</u> No	Answer		Solutions	Marks	AO	Spec.
1	Either: Rearrange (1) to make $x-2y=7$ x=7+2y Substitute (3) into (2) the state of the sta	x the subject $[-2y]$ (3) to find y $(2y) - 2y = 51$ $(-2y) = 5$ 1 $[-35]$ $[\div 8]$	Or: (2) - (1) [to eliminate y and find x] (5x-2y)-(x-2y)=51 $\to 4x = 44$ [÷4] x = 11	M1 method to eliminate 1 variable	1.3b	A19
	Substitute $y = 2$ into (1 $x - 2y = 7 \rightarrow x - (2)$ $\rightarrow x - 4 = 7$ x = 11	×2)=7 [+4]	Substitute $x = 11$ into (1) to find y x - 2y = 7 $\rightarrow 11 - 2y = 7$ [+2 y] 11 = 7 + 2y [-7] $4 = 2y$ [$\div 2$] $2 = y \rightarrow y = 2$ x = 11	M1 substituting A1 both values correct	3	
	Write a Either: Divide (2) by 2 to make $2a + 6c = 216$ [$\div 2$ $a + 3c = 108$ Rearrange to make a th $a + 3c = 108$ [-3 $a = 108 - 3c$ (3) Substitute (3) into (1) $5a + 3c = 240 \rightarrow 5(10 \rightarrow 540 - 15c + 3c = 2 \rightarrow 540 - 12c = 240$ $540 = 240 + 12c$ $300 = 12c$ $c = 25$ Substitute $c = 25$ into ($c = 25$	2 adult tickets and 6 Let $a = 1$ adult ticket; less equations: $5a + 3c$ coefficient of a equal 1 description: $(a + 12c)$ $(a + 12c$	child tickets costs £240 child tickets costs £216 Let $c = 1$ bag of child ticket = 240 (1) 2a + 6c = 216 (2) Or: Multiply (1) by 2 to make c coefficients equal 5a + 3c = 240	M1 forming equations M1 method to eliminate 1 variable M1 substituing found variable A1 both correct values	3.1d 1.3b	A21

Q <u>u</u> Nº	Answer Solutions		Marks		AO	Spec.
3a		Working must be shown Volume of prism = cross-sectional area × depth Cross-section of water tank is trapezium				
		Area of trapezium = $\frac{a+b}{2} \times h$				
		Cross-sectional area of water tank is $\frac{3.4 + 4.6}{2} \times 3 = 12 \text{ m}^2$				
		Depth of water tank is 1.8m Volume of water tank is $12 \times 1.8 = 21.6 \text{ m}^3$	M1		3.1d 1.3b	G16 R9 R1
		The water tank can be filled to 90% of its maximum volume 90% of 21.6 m ³ is 21.6 \times 0.9 = 19.44 m ³	M1		1.30	N2
		1 litre = $0.001 \text{ m}^3 \div 1 \text{ m}^3 = 1000 \text{ litres} \div 19.44 \text{ m}^3 = 19.44 \times 1000 = 19440 \text{ litres}$	M1			
	40 C minutos	The water flows into the tank at 400 litres per minute The time taken to fill the tanks to 90% of its maximum volume is $19440 \div 400$	M1			
	48.6 minutes [with working]	= 48.6 minutes	A1			
b	Any suitable explanation	e.g. if the rate of flow changes, the time taken to fill the tank will also change	A1	6	3.5	R11
4		Area of a semicircle = $\frac{\pi r^2}{2}$				
		Diameter of each semicircle is $36 \div 2 = 18$ cm Radius of each semicircle is $18 \div 2 = 9$ cm	M1			
		Area of 3 semicircles is $3 \times \frac{\pi(8)^2}{2} = 3 \times \frac{64\pi}{2} = 3 \times 32\pi = 96\pi \text{ cm}^2$	M1		3.1b 1.3b	G17 N15
		The sides BC and AD of the rectangle are $9 + 9 = 18$ cm long Area of rectangle is $36 \times 18 = 648$ cm ²	M1			
		Area of shaded section = area of rectangle – area of 3 semicircles Area of shaded section is $648 - 96\pi$	M1			
	266 cm ²	$= 266.29 \text{ cm}^2 = 266 \text{ cm}^2 \text{ correct to 3 significant figures}$	A1	5		
5		Working must be shown				
		Let $n = 0.172 = 0.172727272$ 1000n = 172.7272727 10n = 1.72727272				
	'Prove That' Q ^U working must be shown	1000n - 10n = 171.00000	M1		1.3a	N10
		$n = \frac{171}{990} = \frac{19}{110}$				
		$0.172 = \frac{13}{110}$	A1	2		

Q ^u Nº	Answer	Solutions	Marks	AO	Spec.
6	Enlargement by scale factor $\frac{1}{3}$, centre (2,0)	10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10	A1 enlargement A1 scale factor 1 3 A1 centre (2,0)	2.3a	G7
7	a = 4.8	a is inversely proportional to b so $a = \frac{k}{b}$ Find the value of k : When $b = 40$, $a = 9$: $9 = \frac{k}{40}$ [×40] $k = 360$ $\therefore a = \frac{360}{b}$ When $b = 70$, $a = \frac{360}{75}$ $= 4.8$	M1	1.3b	R10 R13
8	-8	y = mx + c where m is the gradient and c is the y -intercept For the equation $y = 5 - 8x$, -8 is the gradient.	A1	1.2	A10
9	Option 2 [with working]	For the equation $y = 5 - 8x$, -8 is the gradient. Either: Normal bottles contain 650 ml. Option 1: 25% off the normal price = $100 - 25$ 25% of the normal price. Customers get $650 \times 0.25 = 162.5$ ml for free Option 2: 35% extra drink for the same price Total amount of drink is $650 \times 1.35 = 877.5$ ml. The drink is sold at the normal price. Customers get $877.5 - 650 = $77.5 = 0.00113p$ (to 3 significant figures) Option 2: 35% extra drink for the same price Total amount of drink is $650 \times 1.35 = 877.5$ ml. The price per ml of the drink is $650 \times 1.35 = 877.5$ ml. The price per ml of the drink is $9 \div 877.5 = 0.00113p$ (to 3 significant figures) $227.5 \text{ ml} > 162.5 \text{ ml} \therefore \text{ option 2}$ gives the customer the best value for money} Option 1: 25% off the normal price = $100 - 2 = 75\%$ of	M1 M1	3.1d 1.3a 3.3	R9

Q⊔ Nº	Answer	Solu	utions	Marks		AO	Spec.
10	'Show That' Q ^U working must be shown	$\begin{vmatrix} 3+\sqrt{3} \\ = \frac{6+4\sqrt{3}}{3+\sqrt{3}} \times \frac{3-\sqrt{3}}{3-\sqrt{3}} \\ = \frac{(6+4\sqrt{3})(3-\sqrt{3})}{3-\sqrt{3}} \end{vmatrix}$	alise the denominator] the brackets]	M1 rationalising denominator M1 $\sqrt{3} \times \sqrt{3} =$		1.3a	N8
11		$= \frac{6 + 6\sqrt{3}}{6}$ = 1 + \sqrt{3} Area of room = 5 \times 3 = 15 m ²		A1	3		
		Area of rug $=$ $\frac{\pi ab}{4} = \frac{5 \times 3 \times \pi}{4} = \frac{1!}{4}$ Percentage of floor covered $=$ $\frac{\text{area}}{\text{area of }}$ $= \frac{\left(\frac{15\pi}{4}\right)}{15} \times 100 = \frac{100\pi}{4} = 25\pi$		M1		1.3b	R9 G17
12-	78.5%	= 78.5398 = 78.5% (1 dp)		A1	3		
12a	905 cm³	Volume $V = \frac{4}{3}\pi r^3$ = $\frac{4}{3}\pi \times 6^3$ = 904.778 = 905 cm ³ (3 sf)	[substitute in values]	M1 A1		1.3a	G17
b	6,912 cm³	Minimum length = 4 spheres = $8 \times$ sphere radius $8 \times 6 = 48$ cm Minimum height and width = 1 sphere = $2 \times$ sphere radius $2 \times 6 = 12$ cm Minimum volume = $48 \times 12 \times 12$ = $6,912$ cm ³		M1 M1 M1 A1		1.3a 3.1a	G16
13a	a = 2, b = 2, c = -1	Either: $2x^2 - 8x + 7$ $= 2(x^2 - 4x) + 7$ $= 2[(x-2)^2 - 4] + 7$ $= 2(x-2)^2 - 1$ $= 2(x-2)^2 - 1 = a(x-b)^2 + c$ a = 2, b = 2, c = -1	Or: $a(x-b)^2 + c$ $= a(x^2 - 2bx + b^2) + c$ $= ax^2 - 2abx + ab^2 + c$ a = 2 -2ab = -8 $ab^2 + c = 7$ $-2 \times 2b = -8; b = 2$ $2 \times 2^2 + c = 7; c = -1$	M1 rearrange one side in form of the other		1.3b	A4 A18

Q¤ Nº	Answer		Solutions	Marks	AO	Spec.
b		Either: $2x^2 - 8x + 7 = -1$ [use (a)] $2(x-2)^2 - 1 = -1$ [+1]	Or: $2x^2 - 8x + 7 = -1$ [+1] $2x^2 - 8x + 8 = 0$ [÷2]	M1	1.3b	A4
		$2(x-2)^2 = 0 \ [\div 2]$	· ¬	M1	2.2	A18
	x = 2	x-2=0; x=2	x-2=0; x=2	A1	6	
14a		Either: f(x) = 4x, g(x) = 3x - 4 $f(5) = 4 \times 5 = 20$	Or: f(x) = 4x, g(x) = 3x - 4 gf(x) = g(4x) = 3(4x) - 4 = 12x - 4	В1	1.3b	A2 A4 A7
	56	$gf(5) = g(20) = 3 \times 20 - 4$ = 60 - 4 = 56	$gf(5) = 12 \times 5 - 4$ = $60 - 4 = 56$	B1		N/
Ь	<i>x</i> = 4	$fg(x) = 32$ $fg(x) = f(3x-4) = 4(3x-4)$ $= 12x-16$ $\therefore 12x-16 = 32$ $12x = 48$ $x = 4$	(+ 16] (÷ 12]	M1A1	1.3b	A4 A7
15		Frequency = frequency density $\frac{1}{2}$ For 30 $-$ 40 category, 12 = free So frequency density = 1.2 1.2 = 48 squares on y -axis So one square on y -axis = $\frac{1.2}{48}$ For 0–20 houses, frequency der Frequency = 0.3 \times 20 = 6	quency density × 10	M1	1.3b 2.3a 3.1d	\$3
	15	1 '	ensity = 0.025 × 36 squares = 0.9	M1 A1	3	

Q <u>u</u> Nº	Answer	Solutions	Marks	AO	Spec.
16		$y = 6 - 3x$ $y = 2x + 4$ $y = 2x + 4$ $y = -\frac{x}{2}$ $y = -\frac{x}{2}$	M1 one line drawn correctly M1 more than one line drawn correctly A1 region shaded correctly between two correct lines A1 all lines and shaded region correct	2.3b	A9 A22
17	12:3:1	There are 4 times as many pink flowers as purple flowers $:$ the ratio of pink to purple flowers is 4 : 1 There are 3 times as many purple flours as white flowers $:$ the ratio of purple to white flowers is 3 : 1 Pink : Purple Purple : White 4 : 1 3 : 1 12 : 3 [×3] The ratio of pink to purple to white flowers is 12 : 3 : 1	M1 A1	1.3a	R7 R4
18	*Prove That' Quarter Reasoning must be shown Reasons for each statement must be given Draw line AD which passes through the origin. Let angle $0CA = x \& angle 0CB = y Angle 0CA = angle 0AC = x [0A \& 0C are both radii \therefore 0A = 0C \Leftrightarrow x = angle 0AC = = angle $		M1 M1 	2.2 2.4b	G3 G6 G10

Q⊔ Nº	Answer	Solutions	Marks		AO	Spec.
19a	2700	$R = 2700 \times 1.03^t$ where R is the number of rabbits and t is the number of years after 2015 At the beginning of 2015, $t = 0$ \therefore $R = 2700 \times 1.03^0 = 2700$	A1		1.3a	R16
b	Any suitable explanation	e.g. The number of rabbits is being multiplied by 1.03 which is greater than 1, so the number of rabbits is increasing			1.3a	R16
С	3%	The number of rabbits is multiplied by 1.03 for each year This is a percentage increase of 3%	A1		1.3a	R9
d	3039	2019 is $2019 - 2015 = 4$ years after $2015 : t = 4$ The number of rabbits that live in the field in 2019 is 2700×1.03^4 = 3038.873 This rounds up to 3039 (cannot have less than a whole rabbit & 3038 is not enough)		5	1.3b	R16
20	15	Frequency = frequency density \times class width For $90 \le \text{score} < 100$, $4 = \text{frequency density} \times 10 \ [\div 10]$ Frequency density = 0.4 0.4 represented by 8 squares on y -axis \therefore one square on y -axis represents frequency density $\frac{0.4}{8} = 0.05$ For $45 \le \text{score} < 70$, frequency density = $12 \times 0.05 = 0.6$ Class width = 25 Frequency = $0.6 \times 25 = 15$ students	M1 M1 M1 A1	4	1.3b 2.3a 3.1d	\$3
21a	2.25 m	Distance = speed × time = area under the graph $ \begin{array}{c} 3 \\ 5peed \\ (m/s) \end{array} $ Area of a trapezium = $\frac{a+b}{2} \times w$ where a and b are side lengths and w is width of the trapezium Distance in the first section is $\frac{1}{2} \times 0.15 \times 1 = 0.075 \text{ m}$ Distance in the second section is $\frac{0.15 + 0.3}{2} \times 1 = 0.225 \text{ m}$ Distance in the third section is $\frac{0.3 + 0.5}{2} \times 1 = 0.4 \text{ m}$ Distance in the fourth section is $\frac{0.75 + 0.75}{2} \times 1 = 0.625 \text{ m}$ Distance in the fifth section is $\frac{0.75 + 1.1}{2} \times 1 = 0.925 \text{ m}$ An estimate for the total distance covered in 5 seconds is $0.075 + 0.225 + 0.4 + 0.625 + 0.925 = 2.25 \text{ m}$	M1 starting to find area under curve M1 method to find area under curve (at least 2 sections)		1.3a 2.3a 3.1c	A15
b	Overestimate [with reason]	e.g. The diagonal edges of the triangle and trapeziums are slightly above the curve therefore the estimate from part (a) is and overestimate.	A1	4	3.4b	A15
	. 1		otal Marks:	80		