Edexcel Practice GCSE Examination Paper Higher Set 3 Paper 1 Non-Calculator

Solutions

Q <u>u</u> Nº	Answer	Solutions	Marks	AO	Spec.	
1		Factorise $x^2 + 10x + 21$. Find 2 numbers which add to make 10 and multiply to make 21. $(7 + 3 = 10)$; $(7 \times 3 = 21)$ So, $x^2 + 10x + 21 = (x + 7)(x + 3) = 0$ (x + 7) = 0 or $(x + 3) = 0$	M1 $(x \pm 7)(x \pm 3)$ M1 $(x + 7)(x + 3)$		1.3b	A18
	x = -7 or x = -3	x = 0 - 7 = -7 or $x = 0 - 3 = -3$	3			
2		M1 setting up expressions				
		M1 setting up equation to find x		3.1d 1.3b	A21	
		Justine runs $x = 3$ miles in 1 day Kate runs $x + 3 = 3 + 3 = 6$ miles in 1 day	A1 both correct answers	3		
	The midpoint between bisector.	M1 constructing pair of intersecting arcs with equal radii from points S and P M1 drawing perpendicular lines between S & P and points of arcs A1 correct location of point H (± 1mm)	3	2.3b	G 2	
4	Any correct parallel line	Straight line equations can be written in the form $y = mx + c$ where m is the gradient & c is the y -intercept Two straight lines are parallel if their equations have the same gradient. The gradient of $y = 6x + 7$ is $6 : a$ parallel line will also have a gradient of 6 e.g. $y = 6x + 3$ is parallel to $y = 6x + 7$		—	2.1a	А9
5		M1				
		Amount of fruit juice required is $1 \times 4 = 4$ litres Cost of litres of fruit juice is $4 \times 1.80 = £7.20$ Amount of lemonade required is $3 \times 4 = 12$ litres Cost of 12 litres of white paint is $12 \times 0.75 = £9$	M1		1.3b 3.1d	R5
	£16.20	Total cost of 16 litres of fruit punch is $7.20 + 9 = £16.20$	A1	4		

Q <u>u</u> Nº	Answer	Solutions	Marks		AO	Spec.
6a	Calculate at least 3 po	ints on the line, e.g.				
	y = c	x -4 -3 -2 -1 0 1 2 3 4 4-2x 12 10 8 6 4 2 0 -2 -4	M1 ₂ correct points			
	y =	$= 4 - 2x$ $\begin{vmatrix} 12 & & & & & \\ 10 & & & & & \\ 6 & & & & & \\ 4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ & & & & & & & & \\ & & & & & & & \\ & & & & $	M1 at least 2 of their points correctly plotted C1 correct line		2.3a 2.3b	А9
b	x = 1, y = 2	Solution is where the two lines cross. They cross at $(1, 2)$, so the solution is $x = 1, y = 2$	C1	4	2.3a	A19
7	9 + 4√5	$ (2+\sqrt{5})^2 = (2+\sqrt{5})(2+\sqrt{5}) = \frac{\times 2 \sqrt{5}}{2 4 2\sqrt{5}} $ $ = 4+2\sqrt{5}+2\sqrt{5}+5 $ $ = 9+4\sqrt{5} $	M1 expanding brackets M1 $\sqrt{5} \times \sqrt{5} = 5$ A1	3	1.3a	N8
8	y = 1.25	y is inversely proportional to x so $y = \frac{k}{x}$ When $x = 2.5$, $y = 4$ \therefore $4 = \frac{k}{2.5} \qquad [\times 2.5]$ $k = 10$ $\therefore y = \frac{10}{x}$ When $x = 8$, $y = \frac{10}{8}$ $= 1.25$	M1 M1 A1	3	1.3b	R10 R13
9	·	$y = \frac{x+5}{2x-2}$ [multiply by denominator] $y(2x-2) = x+5$ [expand brackets] $2xy-2y = x+5$ [group x terms on one side] $2xy-x = 2y+5$ [factorise by x] $x(2y-1) = 2y+5$ [\div ($2y-1$)]	M1 M1 M1 isolate x		1.3b	A4 A5
	$x = \frac{2y+5}{2y-1}$	$x = \frac{2y+5}{2y-1}$	A1	4		

Q ^u Nº	Answer	Solutions	Marks		AO	Spec.
10	'Show That' Q ^u Working must be	$\frac{3x+2}{4} + \frac{7x-1}{3}$ [find common denominator] $= \frac{3(3x+2)}{12} + \frac{4(7x-1)}{12}$ [expand brackets]	M1		1.3a	A4
	shown	$= \frac{9x+6}{12} + \frac{28x-4}{12}$ [add fractions] = $\frac{37x+2}{12}$	A1	2	2.2	A6
11		Working must be shown $7x+23+3x+7=180 \qquad \text{[angles on straight lines sum to } 180^{\circ}\text{]}$ $10x+30=180 \qquad \text{[}-30\text{]}$	M1			
	'Show That' Q [⊔] Working must be shown		M1		2.4a 1.3b	G3 A17
		9x-7 [substitute $x = 15$] $(9 \times 15) - 7 = 128^{\circ}$ Corresponding angles are equal \therefore AB is parallel to CD.	M1 	4		
12		$27^{\frac{2}{3}} = \frac{1}{27^{\frac{2}{3}}}$	M1		1.2	N.7
	<u>1</u> 9		M1 	3	1.3b	N7
13	ŭ .	$x^{2} + 16x + 40$ [complete the square] = $(x^{2} + 16x + 64) - 64 + 40$ [simplify] = $(x^{2} + 16x + 64) - 24$ [factorise]	M1		1.3a	A4 A18
	$(x+8)^2 - 24$ ($p=8, q=-24$)	L	A1	2		Alo
14	8	Mode = $9 : 9$ must occur at least twice & more than any other number Median = $7 : 7$ is the middle number Mean of $6 : 5$ sum of the five integers $\div 5 = 6$ 3 of the five integers are 7, 9, 9 The other two are unknown, let them be x and y $\frac{x+y+7+9+9}{5} = 6 \qquad [\times 5]$ $x+y+25=30 \qquad [-25]$ $x+y=5$ For greatest possible range, let $x=1$ and $y=4$ (1 + 4 = 5) Five positive integers that fit the criteria are 1, 4, 7, 9, 9 The range is $9-1=8$	A1 5 positive integers with any 1 of the 3 criteria A1 5 positive integers with at least 2 of the criteria A1 correct range from 5 correct integers	3	1.1 1.3a	S 4

Q <u>u</u> Nº	Answer	Solutions	Marks		AO	Spec.
15a	$\sqrt{3}$	$\tan 60^{\circ} = \sqrt{3}$	B1		1.1	G21
b	$\frac{\sqrt{3}}{2}$	$\sin 120^\circ = \frac{\sqrt{3}}{2}$	B1		1.1	G21
С	$y = \frac{a}{x} + b$	y is inversely proportional to x $y = \frac{a}{x} + b$	B1	3	1.1 2.3a	A12
16		Diameter of one circle $=\frac{18}{3}=6$ cm Radius $r=\frac{6}{2}=3$ cm Area of one circle $=\pi r^2=9\pi$ cm ² Shaded area $=$ area of square $-$ 9(area of circle) $=18^2-9(9\pi)$ [simplify]	M1 M1 M1		1.1 1.3b 2.1a	G17
	$(324 - 81\pi)$ cm ²	$=(324-81\pi)$ cm ² (or factorised equivalent, e.g. $81(4-\pi)$ cm ²)	A1	4		
17	96 cm²	Scale factor $=$ $\frac{AB}{BC} = \frac{9}{12} = \frac{3}{4}$ $\therefore BD = BC \div \frac{3}{4} = BC \times \frac{4}{3}$ [substitute in BC = 12] $= 12 \times \frac{4}{3} = 16 \text{ cm}$ Area of BCD $= \frac{1}{2} \times 12 \times 16$ $= 96 \text{ cm}^2$	M1 process to find area	З	1.3b 3.1b	G6 G16 G19
18	(13, 19)	B is the mid-point of AC Co-ordinates of A are (17, 12); Co-ordinates of C are (29, 18) The co-ordinates of B are $\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right) = \left(\frac{17+29}{2},\frac{12+18}{2}\right) = \left(\frac{46}{2},\frac{30}{2}\right) = (23, 15)$ The coordinates of S are (48, 5) The difference in the x-coordinates of B and S is $48-23=25$ The difference in the y-coordinates of B and S is $5-15=-10$ The difference in the x-coordinates of B and T is $25 \times \frac{2}{5} = 10$ The difference in the y-coordinates of B and T is $-10 \times \frac{2}{5} = -4$ The coordinates of T are $(23-10, 15-4) = (13, 19)$	M1 M1 A1	4	3.1a 1.3a	A8 R2

Q <u>u</u> Nº	Answer	Solutions	Marks		AO	Spec.
19		$ \frac{4\sqrt{11}}{5+\sqrt{11}} $ [rationalise the denominator] $ = \frac{4\sqrt{11}}{5+\sqrt{11}} \times \frac{5-\sqrt{11}}{5-\sqrt{11}} $ $ = \frac{4\sqrt{11}(5-\sqrt{11})}{(5+\sqrt{11})(5-\sqrt{11})} $ [expand the brackets]	1.3a	N8		
	$\frac{10\sqrt{11} - 22}{7}$	$= \frac{20\sqrt{11} - 44}{25 + 5\sqrt{11} - 5\sqrt{11} - 11} $ [simplify] $= \frac{20\sqrt{11} - 44}{14}$ $= \frac{10\sqrt{11} - 22}{7}$	M1 √11×√11=11	3		
20	'Prove That' Q [⊔] Reasoning must be shown	Reasons for each statement must be given AE = AE [common side] [side] Angle BAE = angle AED [alternate angles] [angle] AB is parallel to DE [properties of a trapezium] ∴ angle ADE = angle ABE [alternate angles] [angle] Triangle ABE is congruent to triangle AED by angle—side—angle (ASA)	M1 M1 A1	3	2.2 2.4b	G3 G4 G5
21	1	Any number to the power of 0 equals 1. $13^{\circ} = 1$	A1	1	1.3a	N7
22		Smallest prime that divides into 4800: $2 \times 2400 = 4800$ Smallest prime that divides into 2400: $2 \times 1200 = 2400$ Smallest prime that divides into 1200: $2 \times 600 = 1200$ Smallest prime that divides into 600: $2 \times 300 = 600$ Smallest prime that divides into 300: $2 \times 150 = 300$ Smallest prime that divides into 150: $2 \times 75 = 150$ Smallest prime that divides into 75: $5 \times 15 = 75$ Smallest prime that divides into 15: $3 \times 5 = 15$ $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 3 \times 5$	M1 M1		1.3b	N4
	$2^6 \times 3 \times 5^2$	$= 2^6 \times 3 \times 5^2 = 4800$	A1	3		
23a		M1		1.3a	N9	
	2.16×10^{-3}	2.16 is between 1 and 10; the decimal moves an extra place to the left $21.6 \times 10^{-4} = 2.16 \times 10^{1} \times 10^{-4} = 2.16 \times 10^{1} \times 10^{-3}$	A1			
b	<u> </u>	$(1.8 \times 10^7) \div (9 \times 10^3) = (1.8 \div 9) \times (10^7 \div 10^3) = 0.2 \times 10^{7-3} = 0.2 \times 10^4$	M1		1.2	No
	2×10^{3}	In standard form a number between 1 & 10 is multiplied by 10^n 2 is between 1 and 10; the decimal moves an extra place to the right $0.2 \times 10^4 = 0.2 \times 10^{-1} \times 10^4 = 2 \times 10^{-1+4} = 2 \times 10^3$	A 1	4	1.3a	N9

Q <u>u</u> Nº	Answer	Solutions					Marks		AO	Spec.
24a										
	Number of Throws	20	40	60	80	100				
	Number of Tails	12	22	36	42	58			1.3a	P1
	Relative Frequency	0.6	22 ÷ 40 = 0.55	0.6	42 ÷ 80 = 0.525	0.58				
						_	A1 both correct			
b	Relative frequency 0.2 0.4 Number of Throws								2.3b	P1
С	0.58 [with reason]	e.g. 0.58	eason must be given g. 0.58 is the best estimate for the probability of throwing a tails ecause it is calculated from the largest number of throws						2.1b	P5
d	No [with reason]	e.g. The	Passon must be given 9. The probability of a fair coin landing on tails is 0.5. 0.58 is larger an $0.5 :$ the coin is biased						3.4b	P3
25a		Fraction Fraction 24 purple $24 \equiv \frac{3}{4}$ Total nur	of crayons which are of crayons which are of crayons which are crayons of total crayons mber of crayons is 2	green is	$\frac{3}{1+3} = \frac{3}{4}$		M1		3.1c 1.3a	R4 R7
b	8 green crayons	Number = 8 Ratio of 9	of green crayons is 2	ons befo	re more were added w		M1 A1			
	7 green crayons were	8:24=	$8 \times \frac{5}{8} : 24 \times \frac{5}{8} = 5:$	15	more were added was	5 : 8	M1	-	3.1c 1.3a	R8
	added	ine num	per of crayons adde	a to the	box was $15 - 8 = 7$		A1	5 00		
							Total Marks:	ŏU		