Edexcel Practice GCSE Examination Paper Foundation Set 5 Paper 2 Calculator

Solutions

Q <u>u</u> Nº	Answer	Solutions	Marks		AO	Spec.
1	0.625	$\frac{5}{8} = 0.625$	A1	1	1.3a	N10
2	49	Square numbers: 1, 4, 9, 16, 25, 36, 49, 64 Square number between 40 and 60: 49 (= 7^2 = 7×7)	B1	1	1.3a	N1 N6
3a	24	Factors of 72 are numbers that divide exactly into 72 $72 \div 24 = 3$, so 24 is a factor of 72	B1		1.1	N4
b	11	A prime number is only divisible by itself and 1 11 is the prime number in the list $(1 \times 11 = 11)$	B1	2	1.1	N4
4	1 9	18 bulbs in total; 6 of the bulbs are daffodil bulbs (D) $P(D) = \frac{6}{18}$ The bulb taken out first is put back, making the two events independent, so $P(D\&D) = P(D) \times P(D) = \frac{6}{18} \times \frac{6}{18}$ $= \frac{1}{18}$	M1 multiplying probabilities		1.3a	P3
	9	9	A I	2		
5		Ratio of Milk: White: Dark is 5:4:3 Fraction of white chocolates is $\frac{4}{5+4+3} = \frac{4}{12}$	M1		1.3a	R8 N11
	$\frac{1}{3}$	$\frac{4}{12} = \frac{4 \div 4}{12 \div 4} = \frac{1}{3}$	A1	2		IVII
6		1 pound = 16 ounces \therefore 2.5 pounds = 2.5 \times 16 = 40 ounces	M1			
		1 ounces ≈ 28g \therefore 40 ounces ≈ 40 × 28	M1		1.3a	R1
	1,120g or 1.12 kg	= 1120 g [= 1.12 kg]	A1	3		
7	33	f = 6 & g = 5, $\frac{f}{2} + gf = \frac{6}{2} + (5 \times 6)$ = 3 + 30 = 33	M1 substituting	2	1.3a	A2
8		Working must be seen	M			
		In a right-angled triangle, $a^2 + b^2 = c^2$ where c is the hypotenuse. Let $a = 10$ cm & $b = 24$ cm $c^2 = 10^2 + 24^2 = 676$	M1 M1		1.3b 2.1a 3.1b	G6
	Mark is correct	$c = \sqrt{676} = 26 \text{ cm}$	M1			
	[with working]	Mark is correct because the hypotenuse of his triangle equals 26 cm	A1	4		
9	'Show That' Q ^U working must be shown	Working must be shown 1 m = 100 cm \div 5 m = 5 × 100 = 500 cm The total amount of wire used to make the necklaces is 8 × 40 = 320 cm There is $500 - 320 = 180$ cm of wire left over to make bracelets Each bracelet uses 25 cm of wire	M1 M1		3.1d 1.3b 2.2	N2 N15
		There is enough wire left to make $180 \div 25 = 7.2$ bracelets 7.2 rounds down to 7 (not enough wire to make 8 bracelets) Sarah can make a total of 7 bracelets	M1 A1	4	4	

Q <u>u</u> Nº	Answer		Solutions	Marks		AO	Spec.
10		rounded down as she doesn Online, each textbook has a $25 \times 0.85 = £21.25$ each	, Aliyah can buy 4 textbooks (4.8 is a't have enough money to buy 5)	M1 M1		1.3b 3.1c 3.3	R9 N15
	1 more textbook [with working]	(5.647 is rounded down	online, Aliyah can by 5 textbooks as she doesn't have enough to buy 6) 1 more textbook if she buys them online	M1 	4		
11	952	$170\% = \frac{170}{100} = 1.7$ Either: $170\% \text{ of } 560 \text{ is } 1.7 \times 560$ $= 952$	Or: $170\% \text{ of } 560 \text{ is } \frac{170}{100} \times 560 = \frac{170 \times 560}{100}$ $= \frac{95200}{100} = 952$	M1 A1	2	1.3a	N12 R9
12	1.8 litres	18 cups with each cup getting Total amount of soya milk result of the soya milk result of soy	M1 M1 A1	3	3.1c 1.3b	R5	
13	15	$+ (13 \times 4) + (14 \times 5) =$ The mean score of the quiz	is $348 \div 30 = 11.6$ cored higher than 11.6 is $6 + 4 + 5 = 15$	M1 M1	3	1.3b	S4
14		30 apples in total Number of green apples is 30 Number of red apples is 30 Number of red apples from 1	$-10 = 20$ Ben's garden is $20 \times \frac{2}{5} = 8$	M1 M1		3.1d 1.3b	
	$\frac{8}{30}$ or $\frac{4}{15}$	P(red apple from Ben's gar	$den) = \frac{8}{30} = \frac{4}{15}$	A1	3		

Q <u>u</u> №	Aı	nswer			Solution	ns				Marks		AO	Spec.
15a				Pattern number, n	1	2	3	4					
			Numbe	er of white triangles	3	6	9	12					
						<u></u> ✓	<u></u>	<u> </u>					
					+	3 +	- 3	+ 3					
				mon difference in the		of white t	triangle	s between		M1 method to find the		2.1a	A25
			patterns	is 3 so find 3 <i>n</i> value	S 					n th term	-	1.3a	AZ3
				3 <i>n</i>	3	6	9	12	+ 0				
			Numbe	er of white triangles	3	6	9	12	+ 0				
			The num	ber of white triangles	is the sa	me as th	e 3 <i>n</i> v	alues,					
		3 <i>n</i>	so the nu	ımber of white triangl	les in pat	tern n is	3 <i>n</i>			A1			
b			Rule for t	the total number of tr	iangles is	add 8 e	ach tim	e, or patte	rn				
			number :							M1 method to calculate		2.1a	A24
			Total tria	ngles in pattern 100	is 100 ×	8				number of triangles	_	1.3a	A24
		800	= 800							C1			
С			Reason	must be given									
		Yes		ber of triangles starts								2.4a	A24
	[with	reason]	Even + E	Even $=$ Even, so the t	otal num	per of tria	angles v	will never b	e odd	C1	5		
16a			(2 ± 1)	× 7 × 13						M1 trial & error			
			(3 + 1)	^ / ^ 13						A1 correct working		3.1a 1.3b	N2
		364	= 364							A1 correct answer		1.50	
b			e.g. Aide	en's number is 9									
			$7 \times 3 =$									1.3b	N2
			21 – 13									1.50	N3
	Any suitab	ole calculation								A1	4		
17a		Colum		Column 2		umn 3		' 0	4.				
	Row 1	3 <i>x</i>		<i>x</i>		$\frac{4x}{c}$		(3x + x =		A 4		4 21	A 4
	Row 2	4 <i>x</i>		2 x		6 <i>x</i>			,	A1 1 out of 3 correct		1.3b	A4
	Row 3	7x		3 <i>x</i>		10 <i>x</i>		'x + 3x =	= 10x	A1 all correct			
		(3x + 4x =	/x)	(x + 2x = 3x)	(4x + 1)	7x = 10x	x)				-		
b		Column 1		Column 2	Column	2							
	Row 1	$\frac{2x + y}{}$		4x - y	6 <i>x</i>		-	L (12 2)	- 6x	A1 1 out of 4 correct			
	11011	\boldsymbol{z}		$\neg x - y$	O.r	(21	. ,						
	Row 2	_2r		r	_r		_2r	+ r = -1		A 1 2 out of 4 correct			
	Row 2	-2 <i>x</i>		x	-x 5 r			+ x = -x		A1 2 out of 4 correct			
	Row 3	у	= v (Ar.	5x-y	5 <i>x</i>			x = -x $5x - y = 0$		A1 all correct		4 21	A 4
	Row 3	$\frac{y}{2x + y - 2x}$	= y (4x - 1)		5 <i>x</i>							1.3b	A4
	Row 3 Additional	$\frac{y}{2x + y - 2x}$ Working:		5x - y $-y) + x = 5x - y$	5 <i>x</i>							1.3b	A4
	Row 3 Additional Row 2, Co	$\frac{y}{2x + y - 2x}$ Working: $1: (2x - y)$	- y) + ? =	5x - y $-y) + x = 5x - y$ $= y; ? = -2x$	5 <i>x</i>							1.3b	A4
	Row 3 Additional Row 2, Co Row 1, Co	y $2x + y - 2x$ Working: $1: (2x - 1)$ $1: (2x - 2)$ $2: (2x - 3)$	+ y) + ? = + y) + ? =	5x - y - y) + x = 5x - y 6 = y; ?=-2x = 6x; ?= 4x - y	5 <i>x</i>							1.3b	A4
	Additional Row 2, Co Row 1, Co Row 3, Co	y $2x + y - 2x$ Working: lumn 1: $(2x - 1)$ lumn 2: $(2x - 1)$	(-y) + ? = (-y) + ? = (-y) + x	5x - y $-y) + x = 5x - y$ $= y; ? = -2x$ $= 6x; ? = 4x - y$ $= ?; ? = 5x - y$	5 <i>x</i>								A4
	Additional Row 2, Co Row 1, Co Row 3, Co	y $2x + y - 2x$ Working: $1: (2x - 1)$ $1: (2x - 2)$ $2: (2x - 3)$	(-y) + ? = (-y) + ? = (-y) + x	5x - y $-y) + x = 5x - y$ $= y; ? = -2x$ $= 6x; ? = 4x - y$ $= ?; ? = 5x - y$	5 <i>x</i>						5		A4
	Additional Row 2, Co Row 1, Co Row 3, Co Row 2, Co	y $2x + y - 2x$ Working: lumn 1: $(2x - 1)$ lumn 2: $(2x - 1)$	(-y) + ? = (-y) + ? = (-y) + x = (-y) + x = (-y)	5x - y $-y) + x = 5x - y$ $= y; ? = -2x$ $= 6x; ? = 4x - y$ $= ?; ? = 5x - y$ $? = -x$ must be given	5 <i>x</i>					A1 all correct M1 starting reasoning	5		A4
	Additional Row 2, Co Row 1, Co Row 3, Co Row 2, Co	y $2x + y - 2x$ Working: lumn 1: $(2x - 1)$ lumn 2: $(2x - 1)$	(-y) + ? = (-y) + ? = (-y) + x = (-y) + x = (-y)	5x - y $-y) + x = 5x - y$ $= y; ? = -2x$ $= 6x; ? = 4x - y$ $= ?; ? = 5x - y$ $? = -x$	5 <i>x</i>					A1 all correct	5		A4 A4
	Row 3 Additional Row 2, Co Row 1, Co Row 3, Co Row 2, Co	y $2x + y - 2x$ Working: lumn 1: $(2x - 1)$ lumn 2: $(2x - 1)$	(-y) + ? = (-y) + ? = (-y) + x	5x - y $-y) + x = 5x - y = 6$ $= y; ? = -2x$ $= 6x; ? = 4x - y$ $= ?; ? = 5x - y$ $? = -x$ must be given $-3t = 3(2s - t)$	5x $5x - x =$	5 <i>x</i>	y + (5 	(x - y) =	5 <i>x</i>	A1 all correct M1 starting reasoning e.g. factorising	5		
	Row 3 Additional Row 2, Co Row 1, Co Row 3, Co Row 2, Co	y $2x + y - 2x$ Working: $lumn 1: (2x - 2x - 2x - 2x - 2x - 2x - 2x - 2x$	(-y) + ? = (-y) + ? = (-y) + x	$5x - y$ $-y) + x = 5x - y$ $= y; ? = -2x$ $= 6x; ? = 4x - y$ $= ?; ? = 5x - y$ $? = -x$ must be given $-3t = 3(2s - t)$) is a multiple of 3 \therefore	5x $5x - x =$	5 <i>x</i>	y + (5 	(x - y) =	5 <i>x</i>	A1 all correct M1 starting reasoning e.g. factorising	5	1.3a 2.4a	A4

Q <u>u</u> Nº	Answer	Solutions	Marks		AO	Spec.	
19a		Working must be shown On the diagram, distance between Bath & Manchester is 8.7 ± 0.2 cm Scale: 1 cm represents 20 miles The distance between Bath & Manchester is 8.7×20 = 174 ± 4 miles Average speed is 58 mph Speed = $\frac{\text{Distance}}{\text{Time}} \rightarrow \text{Time} = \frac{\text{Distance}}{\text{Speed}}$ Time taken to drive from Bath to Manchester is $\frac{174}{58} = 3$ hrs Halima left Bath at 3pm. The journey took			1.3b 3.1c 3.3	R2 R11	
b	6 pm [with working] Any suitable	3 hours. Halima arrived in Manchester at 3 5 + 3 = 6pm. 5 e.g. Assumed that Halima didn't get stuck in	5:11 pm)	A1			
5	assumption with explanation	stuck in traffic, this would have increased her	_	A1	4	3.4a	R11
20	4w(2+y)	HCF of $8w \& 4wy = 4w$, so $4w$ goes outsid $8w + 4wy = 4w(2 + y)$	le the brackets:	B1	1	1.3a	A4
21	<i>x</i> = 6 or –6	$4x^2 = 144$ [÷4] $x^2 = 36$ [$$] x = 6 or -6		M1 A1	2	1.3b	A17
22		Factors of 16: 1, 2, 4, 8, 16 (1 × 16 = 16, Factors of 32: 1, 2, 4, 8, 16 , 32 (1 × 32 = 32) Factors of 64: 1, 2, 4, 8, 16 , 32, 64 (1 × 64) $16 = 64, 8 \times 8 = 64$	M1 listing factors		1.3a	N4 N5	
	16	HCF of 16, 32 & 64 is 16 (highest number co	ommon to all lists)	A1	2		
23	24.2 cm	$\theta = 25^{\circ}$; Opposite = 14 cm; Adjacent = At tan $\theta = \frac{\text{opposite}}{\text{adjacent}}$ $\Rightarrow \text{adjacent} = \frac{\text{opposite}}{\text{tan }\theta}$ AC = $\frac{14}{\text{tan }30^{\circ}}$ = 24.248 = 24.2 cm correct to 1 decimal	M1 A1	2	1.3b	G20	
24	$\begin{pmatrix} 1 \\ -2 \end{pmatrix}$	$\mathbf{b} - \mathbf{a} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} - \begin{pmatrix} -3 \\ 5 \end{pmatrix}$ $= \begin{pmatrix} -23 \\ 3 - 5 \end{pmatrix} = \begin{pmatrix} -2 + 3 \\ 3 - 5 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$	C1		1.2 1.3a	G25	
25		Angle for fossil fuels is 216° Angle for solar power is 216 – 126 = 90° Percentage of town's energy generated by so	olar power is $\frac{90}{360} \times 100$	M1 M1		1.3b	S2 R9
	25%	= 25%		A1	3		

Q <u>u</u> №	Answer	swer Solutions		I	AO	Spec.
26		Volume of a pyramid = $\frac{1}{3}$ × area of base × height of pyramid Base of pyramid is a triangle. Area of a triangle = $\frac{1}{2}$ × base × height Area of base is $\frac{1}{2}$ × 9 × 18 = 81 cm ²	M1		.3b 3.1a	G 17
		Volume of pyramid is $\frac{1}{3} \times 81 \times 14$	M1			
	378 cm ³	= 378 cm ³	A1	3		
27a	34 (\pm 0.5) mph	From the graph, 54 km/h = 34 (\pm 0.5) mph	A1	2.	.3a	A14
b		$50 \div 2 = 25$ From the graph, 25 mph = 40.5 (± 0.5) km/h	M1		2.1a 2.3a	A14
		$25 \times 2 = 50 \text{ mph} \div 50 \text{ mph} = 40.5 \times 2$	M1		3.1a	Λ14
	81 (± 1) km/h	$= 81 (\pm 1) \text{ km/h}$	A1			
С	Yes [with reason]	e.g. the graph is a straight line passing through the origin \div it shows that km/h is directly proportional to mph	A1	5 2	2.4a	A12
28	720°	Interior angles of a triangle sum to 180° ABCDEF has been divided in to 4 triangles The sum of the interior angles of ABCDEF is 4 × 180 = 720°	M1A1	2 2	2.1a	G3 G6
29		Force on the table is 20 N; area in contact with desk is 0.5 m ²				
	40 N/m²	$Pressure = \frac{Force}{Area} \therefore Pressure exerted on table = \frac{20}{0.5}$	M1 A1		.3a	R11
	40 N/m ²	= 40 N/m ²	Total Marks	2		