Edexcel Practice GCSE Examination Paper
Foundation Set 2 Paper 1 Non-Calculator

Solutions

Q <u>u</u> Nº	Answer	Solutions	Marks		AO	Spec.
1	2800	To round to nearest 100 look at 10s place value: 27 8 4; 8 is more than 5 so round up by increasing 100s value by 1 and reducing all values after to zero: $2784 \rightarrow 2800$	B1	1	1.3a	N15
2a	5 <i>b</i>	$b+b+b+b+b=5\times b=5b$	B1		1.3a	A1
b	f^{5}	$f \times f \times f \times f \times f = f^{1+1+1+1+1} = f^5$	B1	2	1.3a	A1
3	Any even multiple of 9 e.g. 18 or 36	Multiples of 9: 9, 18, 27, 36, 45 Even numbers are exactly divisible by 2. e.g. 18 $(18 \div 2 = 9)$	B1oe	1	1.2	N1
4	Minutes Hours $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A1	2	1.3a	R1
5	3720	$0.93 \times 4000 = \frac{\times 4000 }{0.9 3600 }$ $0.03 120 $ $3600 + 120 = 3720$	A1	1	1.3a	N2
6	753, 735, 537, 573, 3	357, 375	B1	1	1.3a	N2 N5
7	Estimate answer by rounding. e.g. Round to nearest whole number: $6.6 \rightarrow 7$, $14.2 \rightarrow 14$, $3.05 \rightarrow 3$ Use rounded values to estimate answer: $\frac{6.6 + 14.2}{3.05} \approx \frac{7 + 14}{3}$ $= \frac{21}{3} = 7$		M1evidence of estimation A1 or other correct estimation	2	1.3a	N14
8a	5 hours & 45 minutes or $5\frac{3}{4}$ hours	The flight leaves at 16:55 and arrives at 22:40 The total journey time is 5 hours and 45 minutes	A1		1.3a	R1
b	Charlotte is wrong [with reason]	Reason must be seen The flight leaving at 15:50 and arriving at 19:00 has no stops. The total journey time is 2 hours & 10 minutes. The flight leaving at 14:45 and arriving at 16:45 has no stops. The total journey time is 2 hours & 10 minutes. The flight leaving at 19:05 and arriving at 21:40 has no stops. The total journey time is 2 hours and 35 minutes. 2 hours and 35 minutes is longer than 2.5 hours ∴ Charlotte is wrong.	A 1	2	2.4a	R1
9			M1 subtracting 7 from x co-ordinate or adding 7 to y co-ordinate	2	2.1a 3.1a	A8 G4

Q ^u Nº	Answer	Solutions	Marks		AO	Spec.
	Texting & Calling: $38 - 1$ Texting only: $43 - 27 =$	•	A1 27 in intersection A1 16 in texting circle A1 6 outside circles	3	2.3a 2.3b	P6
11		Write the numbers in order: 2.8, 4.1, 7.5, 8.8, 9.9 Largest number 9.9, smallest number 2.8	M1			
		9.9 + 2.8 = 12.7 No other numbers large enough to make 12.7 so 9.9 can be discounted	M1 accept any other logical step		1.3b	N1 N2
	8.8 & 2.8 7.5 & 4.1	$8.8 + 2.8 = 11.6$ [largest remaining number with smallest number] $7.5 + 4.1 = 11.6$ \therefore the pairs are $8.8 \& 2.8$, and $7.5 \& 4.1$	A1 both pairs	3		
12a		$\frac{15}{-}$ [write fractions with a common denominator]	0011001			
	<u>5</u> 6	$\begin{bmatrix} 6 & 3 \\ = \frac{15}{6} - \frac{(5 \times 2)}{(3 \times 2)} = \frac{15}{6} - \frac{10}{6} \\ = \frac{(15 - 10)}{6} $ [subtract numerators & place over denominator] $= \frac{5}{6}$	M1 for common denominators		1.3a	N2 N8
b	<u> </u>	$\frac{2}{3} \div \frac{3}{7}$ [flip the second fraction and multiply]		,		
		$=\frac{2}{3}\times\frac{7}{3}$	M1 flip second fraction and multiply			
		[multiply the numerators together and the denominators together] $\frac{2}{3} \times \frac{7}{3} = \frac{(2 \times 7)}{(3 \times 3)}$ [simplify]			1.3a	N2 N8
	$\frac{14}{9}$ or $1\frac{5}{9}$	$=\frac{14}{9}\left[=1\frac{5}{9}\right]$	A1	4		
13a	23	Number of people who listen to the radio is 23	A1		2.3a	S2
b	13	Number of people who listen to music on CDs is 18 Number of people who listen to music on tapes is 5 18-5=13 more people listen to music on CDs than on tapes	A1		2.3a 1.3a	S2
c	П П	23 people listen to the radio 18 people listen to CDs 5 people listen to tapes Pictogram represents data from 60 people ∴ number of people who listen to music using their phone is 60 − 23 − 18 − 5 = 14 This is represented by:	M1 A1	4	2.3a 1.3a 2.3b	S2

Q <u>u</u> Nº	Answer	Solutions	Marks		AO	Spec.
14a	0.4	Only 1 ribbon colour can be taken out at a time \div events are mutually exclusive & the probabilities sum to 1 P(Blue) = $1-0.25-0.3-0.05=0.4$	B1		1.3a	P4
b	0.55	P(Red) = 0.25; P(Green) = 0.3 P(Red or Green) = 0.25 + 0.3	M 1 summing probabilities		1.3a	P4
4.5	0.55	= 0.55	A1	3		
15	12.2 ± 0.4 km	1 cm represents 2 km On the diagram, the distance between the two towns is 6.1 ± 0.2 cm This represents a distance of 6.1×2 = 12.2 ± 0.4 km A5 version: 4.3 cm (accept 4.1 to 4.4 cm) 4.3 $\times 2$ 8.6 km (accept 8.2 to 8.8 km)	M1	2	2.3a 1.3b	R2
16	6 <i>n</i> – 2	Term 4 10 16 22 + 6 + 6 + 6 The common difference between terms is 6 so find 6 n values 6 n 6 12 18 24 Term 4 10 16 22 The difference between 6 n values & the terms is -2 , so the n th term is $6n - 2$	M1 method to find the n^{th} term; $6n + x$	2	2.1a 1.3a	A25
17a	y = 2	x 0 1 2 3 4 5 2x-5 -5 -3 -1 1 3 5	B12 correct answers B1all correct answers		1.3a	A2
b	y =	3 2 1 1 2 -1 0 1 2/3 4 5 x	M12 correctly plotted points C1 correct line		2.3a 2.3b	А9
С	$x = 4.5 = \frac{9}{2}$	Either: Draw the line $y = 4$ on the graph $2x - 5 = 4$ The 2 lines meet at $(4.5, 4)$ so the solution to $2x - 5 = 4$ is $x = 4.5$ $(+5)$ $2x - 5 = 4$ $2x = 9$ $x = \frac{9}{2} = 4.5$	M1 A1	6	2.3a	A17
18a	8(x+2)	HCF of $8x \& 16 = 8$, 8 goes outside the brackets: 8x + 16 = 8(x + 2)	B1		1.3a	A4
b	a(a+8)	HCF of a^2 & $8a = a$, a goes outside the brackets: $a^2 + 8a = a(a + 8)$	B1	2	1.3a	A4

Q <u>u</u> №	Answer	Solutions	Marks		AO	Spec.
19a	35	7 instructors at the centre; ratio of instructors to adults is 1 : 5 Maximum number of adults on the beginners' climbing course is $7 \times 5 = 35$	A1		1.3a	R5
b		Ratio of instructors to adults is 1 : 5; Ratio of instructors to children is 1 : 3; 12 children & 9 adults booked on the course. Number of instructors needed for the 12 children is $12 \div 3 = 4$	M1		2.4	
		Number of instructors needed for 9 adults is $9 \div 5 = 1.8$ 1.8 rounds up to 2 (cannot have less than a whole person and 1 is not enough)	M1		3.1c 1.3b	R5
	6	Total number of instructors needed is $4 + 2 = 6$	A1	4		
20a	41	The number of people who get to work in 30 minutes or less is $8 + 18 + 15 = 41$	A1		2.3a	S2
b	Any correct explanation involving grouped data	e.g. The time is grouped data so the actual maximum time taken to travel may not be 50 minutes, and the actual minimum time taken to travel may not be 5 minutes	A1	2	3.5	S2?
21		Working must be shown Shop A — buy one get one half price: 2 packs of biscuits costs 1.5 × cost of 1 pack 1 pack of biscuits costs (1.5 ÷ 2) × cost of 1 pack = 0.75 × cost of 1 pack	M1		2.1a	
	Shop B	Shop B — buy two get a third free: 3 packs of biscuits costs $2 \times \text{cost}$ of 1 pack 1 pack of biscuits costs $(2 \div 3) \times \text{cost}$ of 1 pack = 0.666 $\times \text{cost}$ of 1 pack	M1		3.1c	R5
	[with working]	0.666 < 0.75 ∴ Shop B is cheaper per pack of biscuits	A1	3		

Q <u>u</u> Nº	Answer		Solutions							Marks		AO	Spec.		
22a	<u>1</u> 6	Total number of possible outcomes is 6; Number of times 3 can be roll is 1 $P(3) = \frac{1}{6}$ Either:								A1		1.3a	P3		
b		Either: Number of vidiagram or			a total	of 6 ca	n be sh	own in	a possibility space						
			1	2	3	4	5	6							
		1	2	3	4	5	<u>6</u>	7							
		2	3	4	5	<u>6</u>	7	8							
		3	4	5	<u>6</u>	7	8	9							
		4	5	<u>6</u>	7	8	9	10							
		5	<u>6</u>	7	8	9	10	11							
		6	7	8	9	10	11	12							
		The total nu	mber of	possib	le outco	omes is	6 × 6	= 36		M1					
		The total nu	mber of	times i	t is pos	sible to	get a t	total of	6 is 5	M1					
		P(total of 6	$1 = \frac{5}{1}$										P6		
			36							A1			P7		
		Or:								Or:					
		$P(1) = \frac{1}{6}; F$ $P(1 \& 5) =$ $P(3 \& 3) =$	$\frac{1}{6} \times \frac{1}{6} = \frac{1}{6} \times \frac{1}{6} = \frac{1}$	$=\frac{1}{36}$; P($=\frac{1}{36}$; P((2 & 4)	$=\frac{1}{6}\times$	$\frac{1}{6} = \frac{1}{36}$	- ;							
		P(5 & 1) =	$\frac{1}{6} \times \frac{1}{6} =$	= 36						M1					
	5	P(scoring a			$\frac{1}{36} + \frac{1}{36}$	$\frac{1}{36} + \frac{1}{36}$	+ 1/36 +	- <u>1</u> 36		M1					
	3 36	$=\frac{3}{36}$								A1					
23		To get from	the sta	t of line	a to th	ne end	of line a	a you m	nove 2 units to the						
	$\begin{pmatrix} -2 \\ 4 \end{pmatrix}$	To get from the start of line a to the end of line a you move 2 units to the left and 4 units up . This is written as $\mathbf{a} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$						A1	1	2.3a	G25				
24		(8×10^4)	< (2 ×	$10^{3}) =$	8 × 10	$)^{4} \times 2^{-1}$	× 10 ³								
	1.C \ \ 10°	$= (8 \times 2)$				(2) ×	104 + 3	= 16 >	× 10 [/] 	M1	-	1.3a	N9		
25	1.6 × 10 ⁸	= 1.6 × 10				n d:	1 - ء ام ص			A1	2				
25		Angle CAB = $5x - 18 =$	4x + 3	[+ 18]		naing a	ingles]			M1		3.1a 1.3b	G3		
		5x = 4x +	21 [— 4.	x]						M1		3.2	A17		
	<i>x</i> = 21	x = 21								A1	3				

Q <u>u</u> Nº	Answer		Solutions	Marks		AO	Spec.
26		Let the input of A = a & the input Machine A: $2a - 7 = 0$ output; Machines have same output so 2	achine B: 3 <i>b</i> + 8 = Output	M1 equations formed			
	17	The input of A is 4 times the input $2a-7=3b+8$ [si $(2\times4b)-7=3b+8$ [si $\rightarrow 8b-7=3b+8$ [$+5b=15$	M1 solving for 'their b' M1 substituting	5	1.3b	A2 A17	
27	Rotation of 90° anticlockwise, or rotation of 270° clockwise, about the point (0, 0)	Either: The transformation which maps shape A onto shape B is a rotation of 90° anticlockwise. The centre of rotation is (0, 0).	Or: The transformation which maps shape A onto shape B is a rotation of 270° clockwise. The centre of rotation is (0, 0).	M1 two from 'rotation, 90°/ 270°, anticlockwise/ clockwise, about (0,0)' A1 complete answer	2	2.3b	G7
28a	'Show That' Q ^U working must be shown	Area of a square = (side length) ² Area of a rectangle = length × width Area of ABGH is $(x + 2)^2 = (x + 2)(x + 2) = (x^2 + 4x + 4)$ cm ² Area of BEFG is $(x + 2) \times 2 = 2(x + 2) = (2x + 4)$ cm ² Area of BCDE is $2^2 = 4$ cm ² Fotal area of larger shape is $(x^2 + 4x + 4) + (2x + 4) + 4$ $= x^2 + 6x + 12$		M1 M1 M1		1.3b 2.2 2.4a	G16 G17 A4
b	x = 3	Area of shape is $39 \text{ cm}^2 : x^2 + 6x + 12 = 39$ [- $x^2 + 6x - 27 = 0$ [fate of the example	.39] actorise] 	M1 A1	6	1.3b	A18

Q <u>u</u> Nº	Answer	Solutions	Marks	AO	Spec.
29a	Step 1 [with explanation]	e.g. Rafael went wrong in step one because he added the values instead of multiplying them	A1	3.4a	A18
b		(x+2)(x+5) = 3(x+2) [expand brackets on LHS] $\frac{x}{x} \frac{x}{x^2} \frac{2}{2x} = 3(x+2)$ $\frac{x^2}{5} \frac{2}{5x} \frac{2}{10}$ [expand brackets on RHS] $\frac{x^2}{5} + 7x + 10 = 3(x+2)$ [expand brackets on RHS]	M1 expanding	1.3b	A18
	x = -2	$x^{2} + 4x + 10 = 6$ [-6] $x^{2} + 4x + 4 = 0$ [factorise] (x+2)(x+2) = 0 x = -2	M1 making equation equal 0 M1 factorising	5	
	x Z	x = L	Total Marks:		