

Revision Grids for AS and A Level Year 1 AQA Physics

Sections 1 and 2

zigzageducation.co.uk

POD 8075

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

Tollow us on Twitter **@ZigZagScience**

Contents

Thank You for Choosing ZigZag Education	i
Teacher Feedback Opportunity	ii
Terms and Conditions of Use	iv
Teacher's Introduction	
3.1 Measurements and Their Errors	
3.1.1 Use of SI units and their prefixes	
3.1.2 Limitations of physical measurements	
3.1.3 Estimation of physical quantities	15
3.2 Particles and Radiation	17
3.2.1.1 Constituents of the atom	17
3.2.1.2 Stable and unstable nuclei	20
3.2.1.3 Particles, antiparticles and photons	22
3.2.1.4 Particle interactions	
3.2.1.5 Classification of particles	30
3.2.1.6 Quarks and antiquarks	34
3.2.1.7 Applications of conservation laws	36
3.2.2.1 The photoelectric effect	37
3.2.2.2 Collisions of electrons with atoms	39
3.2.2.3 Energy levels and photon emission	42
3 2 2 4 Waye-narticle duality	43

Teacher's Introduction

These Revision Grids are a tool designed to help you deliver A Level AQA Physics Section 3.1: Measurements and Their Errors and Section 3.2: Particles and Radiation. The concept is that your students are assigned a set of pages to read from their notes or a textbook, possibly for homework, and then asked to complete the relevant Revision Grids. These activities may be particularly useful for your weaker learners, who may benefit from both the requirement to read all the notes to find the information and the act of writing the answers down.

The grids are designed to ask questions in sufficient detail that your students are able to study the relevant sections and find the correct answers. Completed grids are provided so that your students' answers can be marked or checked. It may also be useful to hand them out to students during their revision to assist them with answers they do not know.

Advantages of using these Revision Grids are:

- Some students will find this method of studying of great value, particularly if they find it difficult to absorb information in class.
- Resulting grids contain a bullet point summary that may be useful for revision.
- They are an easy to set yet valuable homework.
- They are a useful catch-up tool to help students who have missed a lesson.
- They can be used as a basis for cover lessons that require minimal preparation and no interaction from the cover teacher.
- They are an independent learning resource.

This resource directly references:

AQA Physics A Level Year 1 Student Book; 2nd edition; Breithaupt; Oxford, 2015

AQA A Level Physics Year 1 and AS Student Book; Kelly; HarperCollins, 2015

AQA A Level Physics Student Book 1 (AQA A level Science); England, Davenport, Pollard, Thomas; Hodder Education, 2015

You may want to photocopy the sheets onto A3 paper, particularly for students with reading or writing difficulties.

For all formats the licence terms are that the purchasing institution can make unlimited copies on a single site, for students and teachers officially registered at that site.

Free Updates!

Register your email address to receive any future free updates* made to this resource or other Physics resources your school has purchased, and details of any promotions for your subject.

* resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

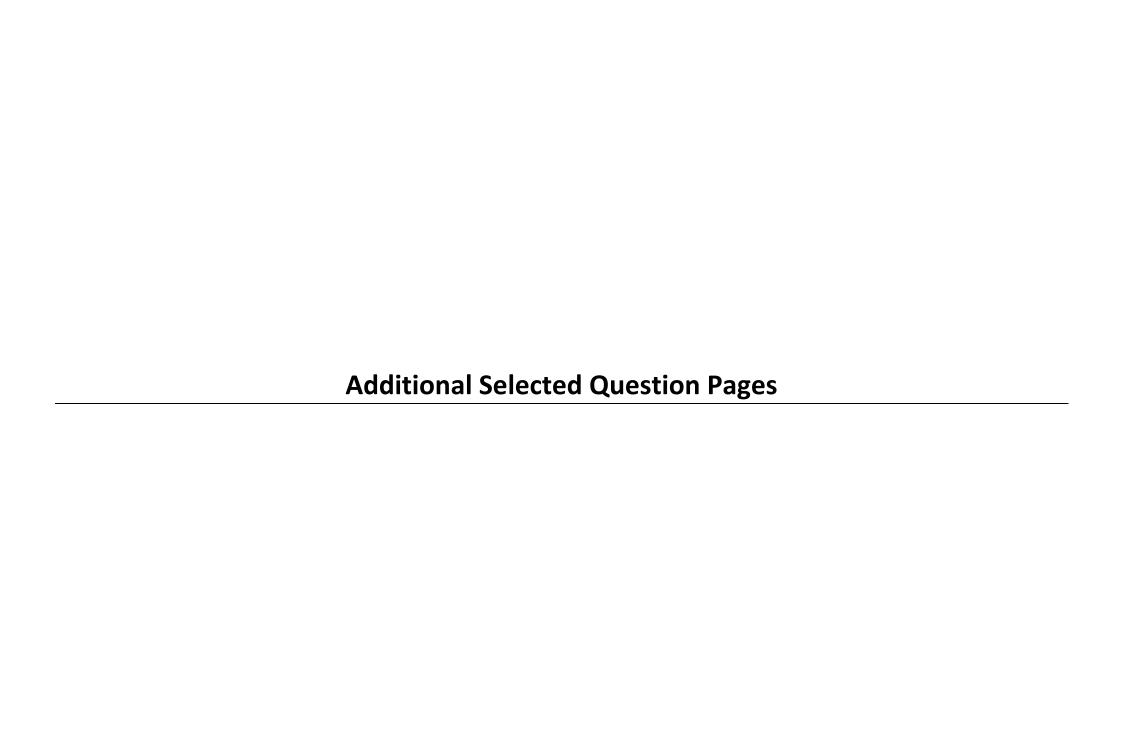
Go to zzed.uk/freeupdates

Selected Question and Answer Pages For demonstration only, the sample answer pages immediately follow their corresponding question pages		
For demonstration only, the sample answer pages immediately		
For demonstration only, the sample answer pages immediately		
	and Answer Pag	ges
		nediately

	Questions	Answers			
fixes	Convert 0.0004 m into: a) cm b) mm c) µm	a)	b)		c)
d their pre	Convert 1 cm ³ into: a) m ³ b) mm ³	a)		b)	
SI units an	Convert 2000 mm ² into: a) cm ² b) m ² – give your answer in standard form	a)		b)	
3.1.1 Use of SI units and their prefixes	Convert 50 m s ⁻¹ into km h^{-1} .				
	Convert 0.5 m ³ into: a) cm ³ b) mm ³ – give your answer in standard form	a)		b)	

	Questions		Ansv	wers	
efixes	Convert 0.0004 m into: a) cm b) mm c) µm	a) (× 100) = 0.04 cm	b) (× 1000)	= 0.4 mm	c) $(\times 10^6) = 400 \mu\text{m}$
d their pr	Convert 1 cm ³ into: a) m ³ b) mm ³ a) 1×10^{-6} m ³ or 0.000001 m ³		b) $1 \times 10^3 \text{mm}^3 \text{or} 1000 \text{mm}^3$		
SI units an	Convert 2000 mm ² into: a) cm ² b) m ² – give your answer in standard form	a) $(\div 10^2) = 20 \text{ cm}^2$		b) (÷ 1000 ²	$^{2}) = 2 \times 10^{-3} \mathrm{m}^{2}$
3.1.1 Use of SI units and their prefixes	Convert 50 m s ⁻¹ into km h^{-1} .	$\frac{50 \div 1000}{1 \div 3600} = 180 \text{ km h}^{-1}$			
3.1	Convert 0.5 m ³ into: a) cm ³ b) mm ³ – give your answer in standard form	a) $5 \times 10^5 \mathrm{cm}^3 \mathrm{or} 500000 \mathrm{c}$	m³	b) 5×10	Zig

© ZigZag Education


	Questions	Answers
ents	A digital voltmeter was used to measure the voltage across a component. The voltage was measured to be 10.0 V. a) Write down the uncertainty in the measurement. b) Calculate the percentage uncertainty in the voltage.	a) b)
3.1.2 Limitations of physical measurements	Resistance is calculated using the equation: $resistance = \frac{voltage}{current}$ The voltage was measured to be 5.2 V using a voltmeter with an uncertainty of ± 0.1 V. The current was measured to be 0.9 A using an ammeter with an uncertainty of ± 0.1 A. Calculate the percentage uncertainty of the resistance.	
3.1.2 Limitations	Power can be calculated using the equation: power = current × voltage The voltage was measured to be 9.6 V using a voltmeter with an uncertainty of ±0.1 V. The current was measured to be 8.6 A using an ammeter with an uncertainty of ±0.1 A. Calculate the percentage uncertainty of the power.	

	Questions	Answers
ments	A digital voltmeter was used to measure the voltage across a component. The voltage was measured to be 10.0 V. a) Write down the uncertainty in the measurement. b) Calculate the percentage uncertainty in the voltage.	a) The uncertainty in the measurement is ± 0.1 V. b) The percentage uncertainty is: $percentage uncertainty = \frac{0.1}{10} \times 100 \% = 1 \%$
measurei	Resistance is calculated using the equation: $resistance = \frac{voltage}{current}$	Percentage uncertainty in the voltage: $percentage\ uncertainty = \frac{0.1}{5.2} \times 100\ \% = 1.9\ \%$
physical	The voltage was measured to be 5.2 V using a voltmeter with an uncertainty of ±0.1 V. The current was measured to be 0.9 A using an ammeter with an uncertainty of ±0.1 A.	Percentage uncertainty in the current: $percentage\ uncertainty = \frac{0.1}{0.9} \times 100\ \% = 11.1\ \%$
Jo su	Calculate the percentage uncertainty of the resistance.	Percentage uncertainty in the resistance: $percentage\ uncertainty = 1.92 + 11.11 = 13.0\ \%$
3.1.2 Limitations of physical measurements	Power can be calculated using the equation: power = current × voltage	Percentage uncertainty in the voltage: $percentage\ uncertainty = \frac{0.1}{9.6} \times 100\ \% = 1.0\ \%$
3.1.2	The voltage was measured to be 9.6 V using a voltmeter with an uncertainty of ±0.1 V. The current was measured to be 8.6 A using an ammeter with an uncertainty of ±0.1 A.	Percentage uncertainty in the current: $percentage\ uncertainty = \frac{0.1}{8.6} \times 100\ \% = 1.2\ \%$
	Calculate the percentage uncertainty of the power.	Percentage uncertainty in the power: percentage uncertainty = 1.04 + 1.16 = 2.2 % © ZigZag Education

Oxford: pp. 41–43 Collins: pp. 179–181 Hodder: pp. 63–65

	Questions	Answers
	a) What evidence is there for the wave nature of particles?b) How does this phenomenon show the wave nature?	a) b)
ality	What evidence is there for the particle nature of waves?	
icle dua	State what is meant by wave-particle duality.	
3.2.2.4 Wave-particle duality	What is meant by the de Broglie wavelength?	
3.2	Calculate the de Broglie wavelength of: a) an electron moving at 4.8×10^5 m s ⁻¹ b) a 1200 kg car moving at 10 m s ⁻¹	a) b)

	Questions	Answers			
	a) What evidence is there for the wave nature of particles?b) How does this phenomenon show the wave nature?	a) Electron diffractionb) Particles are unable to diffract; however, waves can diffract when they move through a gap or obstacle whose size is comparable to its wavelength.			
lity	What evidence is there for the particle nature of waves?	The photoelectric effect.			
cle dua	State what is meant by wave-particle duality.	Particles of matter have both a wave nature and a particle nature.			
3.2.2.4 Wave-particle duality	What is meant by the de Broglie wavelength?	The wave-like behaviour of a particle of matter has a property called a de Broglie wavelength, which is given by: $\lambda = \frac{h}{mv}$ where λ is the de Broglie wavelength, h is Planck's constant and mv is momentum.			
3.	Calculate the de Broglie wavelength of: a) an electron moving at 4.8×10^5 m s ⁻¹ b) a 1200 kg car moving at 10 m s ⁻¹	$\lambda = \frac{h}{p} = \frac{h}{mv}$ a) $\lambda = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 4.8 \times 10^{5}} = 1.5 \times 10^{-9} \text{m} = 1.5 \text{ nm}$ b) $\lambda = \frac{6.63 \times 10^{-34}}{1200 \times 10} = 5.5 \times 10^{-38} \text{ m}$ © ZigZag Education			

3.2 Particles and Radiation

	Oxford: pp. 4-29	Collins: pp. 24-
JII	Oxiolal ppi 1 25	common ppr = :

–81 Hodder: pp. 1–41

	Question		Answer		
	Describe the simple model of the atom.				
3.2.1.1 Constituents of the atom	The element fluorine can be described using the notation: 19F State the number of protons, neutrons and electrons.				
f th		Particle	Relative Charge (e)	Relative Mass (u)	
ts o	Complete the table:	Proton			
nen		Neutron			
stit		Electron			
Con		Particle	Charge (C)	Mass (kg)	
1.1	Complete the table:	Proton			
3.2		Neutron			
		Electron			
	Write down an equation used to calculate specific charge.				

	Question		Answer	
	Calculate the specific charge of: a) a proton b) an electron	a) b)		
f the atom	Calculate the specific charge of: a) a $^{12}_{6}$ C nucleus b) an alpha particle c) an 0^{2-} ion of the $^{16}_{8}$ O nucleus	a)	b)	с)
3.2.1.1 Constituents of the atom	Calculate the charge of an ion with a specific charge of 9.58×10^7 C kg $^{-1}$ and a mass of 1.67×10^{-27} kg.			
3.2	Calculate the mass of an ion of charge 3.20 × 10 ⁻¹⁹ C and a specific charge of 1.20 × 10 ⁷ C kg ⁻¹			

	Question	Answer	
atom	AZX What is represented by: a) A? b) Z?	a)	b)
Constituents of the atom	Why does an atom have zero charge?		
tituent	What is a nucleon?		
l Const	What are isotopes?		
3.2.1.1	Element X has a relative abundance of 40 % of the isotope with mass 14 u and a relative abundance of 60 % of the isotope with mass 15 u.		
	Calculate the relative atomic mass.		

	Questions	Answers
3.2.1.2 Stable and unstable nuclei	What is the strong nuclear force and what is its importance?	
	Describe how the strong nuclear force changes with range. Label the graph opposite with significant values and regions to show this.	Force Particle separation
	What does alpha radiation consist of?	
	State a way in which alpha particles could be detected in the lab.	
	What is beta radiation?	