

Topic Tests

for BTEC National Applied Science

Principles and Applications of Science II

zigzageducation.co.uk

POD 8053

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

Contents

Thank You for Choosing ZigZag Education	ii
Teacher Feedback Opportunity	iii
Terms and Conditions of Use	iv
Teacher's Introduction	1
Write-on Topic Tests	2
A1: Relating properties to uses and production of substances	
A2: Structures, reactions and properties of commercially important organic compounds	7
A3: Energy changes in industry	
B1: The cardiovascular system	16
B2: Ventilation and gas exchange	21
B3: Urinary system structure and function	25
B4: Cell transport mechanisms	29
C1: Thermal physics in domestic and industrial applications	33
C2: Materials in domestic and industrial applications	39
C3: Fluids in motion	43
Non-write-on Topic Tests	46
A1: Relating properties to uses and production of substances	46
A2: Structures, reactions and properties of commercially important organic compounds	48
A3: Energy changes in industry	51
B1: The cardiovascular system	53
B2: Ventilation and gas exchange	56
B3: Urinary system structure and function	58
B4: Cell transport mechanisms	60
C1: Thermal physics in domestic and industrial applications	62
C2: Materials in domestic and industrial applications	
C3: Fluids in motion	67
Answers	68
A1: Relating properties to uses and production of substances	68
A2: Structures, reactions and properties of commercially important organic compounds	70
A3: Energy changes in industry	72
B1: The cardiovascular system	74
B2: Ventilation and gas exchange	76
B3: Urinary system structure and function	77
B4: Cell transport mechanisms	79
C1: Thermal physics in domestic and industrial applications	
C2: Materials in domestic and industrial applications	
C3: Fluids in motion	84

Teacher's Introduction

These topic tests have been designed to help you and your students assess their knowledge of a topic after you have taught each part of the Unit 5 modules of the BTEC Applied Science course. This part of the course corresponds to Principles and Applications of Science II.

Each topic test closely follows the content of the specification and includes:

- **Factual questions**: Some simpler factual questions are included to ensure that all the content and basics are covered, and to allow weaker learners access to some marks.
- **Short-answer questions**: These are not in exam style, and the purpose of these is to test different elements, knowledge and skills from the specification in a variety of styles.
- **Long-answer questions**: Where appropriate, topics may contain one or more extended response questions, to prepare students for what they might meet in the exam, and to test exam skills.

Mathematical skills are also covered in these topic tests.

Tests have been designed to take approximately 25–35 minutes to complete.

Students are able to see the number of marks awarded for each question, allowing them to gauge the level of detail they will require for the answers. Full answers with marks are included in the answers section. Additionally, it makes the resource a suitable tool for students to use independently.

Remember!

Always check the exam board website for new information, including changes to the specification and sample assessment material.

The topic tests are suitable for a classroom assessment, revision aid or homework task and are, therefore, suitable for use immediately after a topic is completed in class or at the end of teaching the course.

It is recommended that students have access to a calculator to complete the questions.

We hope you find these tests useful during your teaching.

November 2017

Free Updates!

Register your email address to receive any future free updates* made to this resource or other Science resources your school has purchased, and details of any promotions for your subject.

* resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

Go to zzed.uk/freeupdates

A1: Relating properties to uses and production of sub

Metal oxides are used as heat-resistant materials, catalysts and as raw metals. NSPECTION COF Most metal oxides are considered basic. a) Complete the balanced chemical equation, show how magnesium base when it reacts with hydrac 'ricaia, HCl. MgO + 2HCl b) um can also form a base called magnesium hydroxide, M Which of these is a product when magnesium hydroxide reacts w H_2O В H_2 C O_2 CO_2 Al₂O₃, also known as alumina, is the raw material used to obtain Alumina is amphoteric. What is the definion of the term 'ar Can absorb water f 🤍 🐔 🔊 ni temperature Can dissolve in water Can act as an acid or a base Extraction of aluminium from alumina involves dissolving a performing electrolysis. Explain why this process is expensive. **PROTECTED**

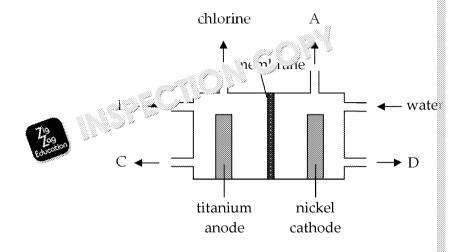
COPYRIGHT

Identify **two** uses of copper and give two properties that make it Use 1: Property 1: Use 2: Many metal compounds are vital in processes which shape modern li Calcium hydroxide is used in waste water treatment. Explain ho this is important. b) Some transition metals and their con box as are used as catalysts For example, iron catalystate action in a process used to make oxide catalyses the contact process. 1, catalysts are important in these reactions. ii) State the final product of the contact process. iii) Suggest two reasons (12) It is more desirable to use iron as a platinur.

INSPECTION COPY

iv) Other than their catalytic ability, state two common properties Bauxite is an aluminium ore. Alumina can be extracted from ົ່ນ. 📆 asıng sodium hydroxide. Describe how this works in terms of the chemicals preser Alumina can be used in refractories. Identify **one** property of alumina which makes it suitable for use Alumina can be processed further to make aluminium using the c) During this process, it is necessary to discolor alumina in mol Explain why it is necessary to a live alumina for this process to

NSPECTION COPY


The extraction of titanium from its ore is a two-step process: Reaction 1 uses chlorine and another element. Reaction 2 uses magnesium. In reaction 1, TiO₂ is converted to TiCl₄ by reacting it with chloring added. Name the other element used in reaction 1. balanced symbol equation for reaction 2, where titanium **b**) magnesium. Titanium is used for hip replacements, planes and specialist spark c) Identify **one** property that makes it more suitable than most other produced using the electrolys The chlorine used in this proceed ant hydroxide are also produced in this p atily the ions present in a solution of brine, including thos

INSPECTION COPY

ii) The diagram below shows how brine can be used to create clamembrane cell.

Identify suitable labels for the following diagram:

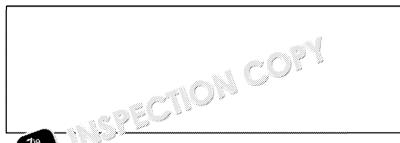
A :	
D.	***********
B :	
C:	
D:	
IJ.	 •

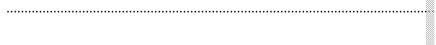
iii) Explain why it is advantagen a first a membrane cell for the diaphragm cell.

	<i></i>
710	
709	
Cation	

USPECTION COPY

A2: Structures, reactions and properties of commercorganic compounds


- Alkanes and alkenes are important chemicals obtained from crude oil
 Alkanes can be used as fuels and lubricants, and alkenes are often use and other large molecules.
 - a) Many alkanes and alkenes have a mers
 - i) How man are there of butane?


ii) How many isomers of butane are straight-chain?

b) Draw a cyclic alkene with 6 carbons.

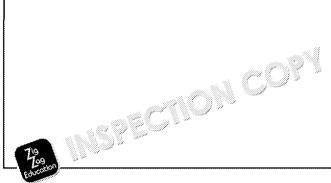
c) Alexandra and alkenes are homologous series which can be represent which the general formula of the alkanes.

2. This diagram shows propene:

a) Identify the feature of this molegie this means that it is unsaturable to the state of the st

	 	 	••••••

b) Write the shortened structural formula for this molecule.


 •••••

INSPECTION COPY

3. Methane, CH₄, is an alkane and a fuel.

a) Draw methane using a wedge/dash line diagram.

b) The bonding in methane can be explained using hybridisation.

i) Describe what is meant by the term *hybridisation*.

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •

ii) Explain how hybridisation occurs in methane.

......

- **4.** But-2-ene is an alkene used as a fuel and as a reagent for making commounds. But-2-ene contains a double bond.
 - a) Draw the skeletal formula of but-2-ene.

b) Explain whether by Fen is a symmetric or an asymmetric alkered

			,,,,,,	
Zog Education)			

.....

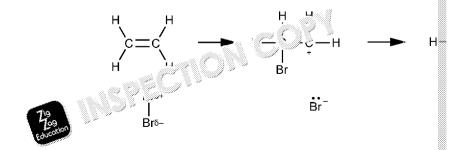
INSPECTION COPY

Describe the double bond in but-2-ene in terms of sigma- and pi-Alkenes, alkanes and aromatic compounds like beginne have different strengths. Put the following in order: Place benzene and the double bond in cyclohexene **Shortest:** Place benzene, cyclohexane, and the double bond in cyclohexene Strongest: Weakest: Explain how the length of a straight-chain alkane affects its boiling po Ethane, C₂H₆, reacts with chlorine, Cl₂, in a radical substitution reaction three stages: initiation, propagation and termination. State a key condition for the initiation stage. b) Write reactions which occur to propagation stages and one Propagation. Termination

INSPECTION COPY

8. Alkenes are an important starting material for making many other kir Alkenes commonly react with electrophiles.

- a) Define the term 'electrophile'.
- b) Draw the structure of ane of act of the addition reaction between and water, Harris and water,



c) Add arrows to show the first step of the addition to ethene.

$$c=c$$

d) Complete the mechanism for the addition of bromine to ethane.

NSPECTION COPY

e)	When pro	pene reacts	with hydros	gen bromide,	HBr. there	are two
υ,	vviicii pio	ocite reacts	with the arce	scii bioiiiiac,	TIDI, HICIC	uic trre

Н	Н	Н	
Ċ=	=ċ-	−ċ–	-1
Ĥ		Ĥ	
14	.,,	л те	

Draw the displayed formula or the products, and predict, with the products will have a first aim the largest amount.

72 de la constante de la const	

9. Some reactions are particularly useful for creed valuable products.

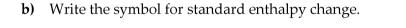
a) Identify the type of product in premic peroxides are added to

A	Alcoho's
1	ymers ymers
300	Carboxylic acids
D	Ketones

b) Explain the purpose of cracking.

INSPECTION COPY

A3: Energy changes in industry

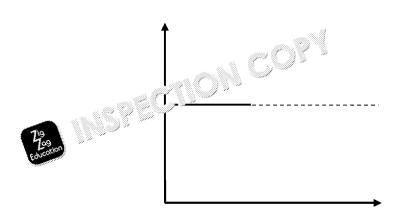

1. Kelvin is a scale often used to measure temperature.

Write 310 K in °C.

2. Enthalpy change has the symbol ΔH .

a) Which of these is the equation of enthalpy change

A	AH A A
1 60	$=\Delta U - p\Delta V$
С	$\Delta H = \Delta U \times p \Delta V$
D	$\Delta H = \Delta U \div p\Delta V$



c)	What are the temperature and	pressure for standard enthalpy cha
	Temperature:	
	Procento	_ < CO : *

- 3. A reaction has an enth change of -98 kJ mol-1.
 - a) Ey jan with a this is an exothermic or endothermic process.

b) Complete a reaction profile for this reaction on the following axes

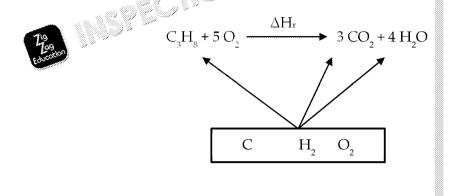
- Labels for the axes
- A reaction curve
- Activation energy
- Energy change
- Reactants and products

INSPECTION COPY

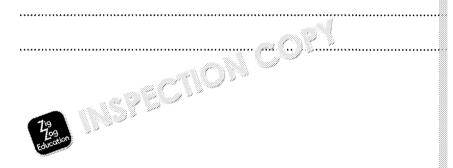
COPYRIGHT PROTECTED

Zig Zag Education

4.	Describe how surroundings.		nges during an	endothermic reactior	ı in t	
	System	•••••				=
5.	Surroundings		ture values for t	he enthalpy changes	of cos	NSPE(
	Edveration	<i>"</i> 1	Alcohol	Enthalpy change (kJ mol ⁻¹)		
			ethanol	-1367	1	
			propan-1-ol	-2021	1	\cup
			butan-1-ol	-2676		Z
	b) A student equipmen	t.	riment to find th	or combustion of pronis value. of calculations in you		PΥ
				023	PR	PYRIGHT OTECTED Zig Zag Jucation
	ed comment					Jucation


ii) Explain why the student obtains a value which is lower than iii) Suggest one way that the student can obtain a value closer to formation is given the symbol ΔH_f State the definition of enthalpy of formation. a) Predict the enthalpy of formation of *G* 7. hange of hydration of copper sulfate can be calculated fr The en the following apparatus: thermometer copper sulfate glass watch beaker glass water 4.1 g of anhydrous copper sulfate, CuSO₄, was dissolved in 0.100 In this experiment, the temperature of the water increased by 6.0 Calculate the energy change for this process Change in energy = mass × special har capacity × change in temp a.er is 4.18 kJ kg-1 K-1.] The specific heat capaia

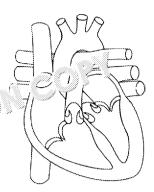
INSPECTION COPY



b) Use the values for the enthalpy of formation to calculate the enthalph ΔH_r for the combustion reaction shown.

Compound	Standard entha	lpy of format
Propane, C3H8		-118.9
Carbon dioxide, CO2		-393.5
Water, H2O		-285.8

***************************************		•••••



INSPECTION COPY

B1: The cardiovascular system

1. The figure below is an image of a mammalian heart.

- a) On the figure, label:
 - i) The tricuspid valve (with an X)
 - ii) The bicuspid valve (with a Y)
- b) Tick the heart structure that does **not** regulate heart conduction.

A	Sino-atrial node
В	Atrioventricular node
C	Bicuspid valve
D	Purkinje fibres

	1	
772		

c) Describe how the electrical graph preads across the heart.

719 709 109	•
- 00000-	
	å

The heart is made of myogenic muscle

d) How is myogenic red cleduterent to skeletal muscle?

Education	

INSPECTION COPY

NSPECTION COPY

COPYRIGHT PROTECTED

Zig Zag Education

Αp	patient has a resting heart rate of 112 beats per minute. The stroke
<u>e)</u>	What is the cardiac output of this patient? Give your answer in d

f) Ic 7 watch statement about the ABO rhesus system is correct

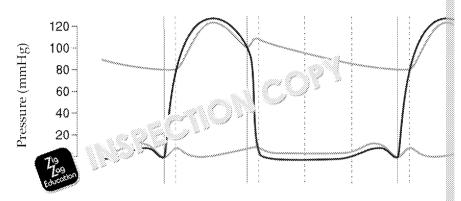
- A People with the AB blood group produce anti-A and anti-B
- **B** Universal donors normally have the blood group AB.
- C A reaction to anti-D antibody indicates the blood is Rh-.
- D O blood group samples do not have ABO group antigens on the

2. Connect these vessels with their key characteristics.

Largest lumen

Highly elasticated

cinfusion


High blood pressure

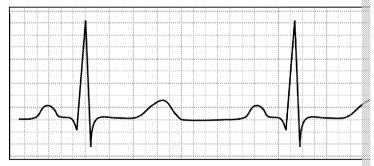
One cell thick

Contains valves

3. The figure below shows the pressure changes associated with the card

a) Label, with the letters indicated:

i) The diastole phase of the cardiac cycle (D)


ii) The point at which the bicuspid valve closes (E)

iii) The point at which the semilunar valve opens (F)

b) Describe how blood pressure changes in blood vessels between the

4. Electr 19 og ams (ECGs) can be used to identify changes in the hear the electron conduction that regulates heart rhythm.

A normal ECG trace is shown above.

a) What heart condition would be represerted by an ECG trace show rapid peaks?

T de	A	Bradver	
		y zardia	
	Section)	Arrhythmia	
	D	Ectopic heartbeat	

b) i) On the trace, circle the QRS complex.

INSPECTION COPY

Explain the significance of this complex. برَّى) is the single most significant killer of th Cardiovascular die a k actors put people at risk of cardiovascular diseases, an List two possible disadvantages of the use of antihypertensive me NSTE

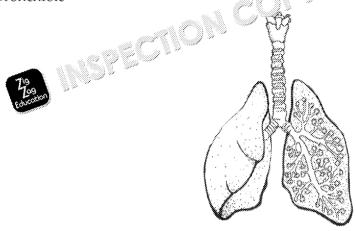
INSPECTION COPY

6. A student is investigating the effect of caffeine on the heart rate of the The results are shown below.

Daphnia Heart Rate 240 220 180 180 100 0 2 4 6 Caffeine (mg mL⁻¹)

- a) How much caffeine is dissolved in 35 mL of water to make a 6 mg
- **b)** Explain how caffeine affects *Daphnia* heart rate, suggesting why the reach a plateau.

79

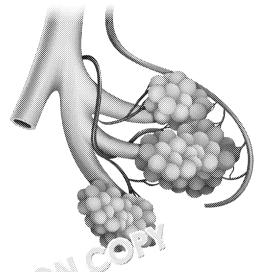


B2: Ventilation and gas exchange

- 1. Label the diagram below of the human gas exchange system with the
 - Alveolus
 - Trachea
 - Bronchus
 - Bronchiole

۷.	1116	ziuli	gs are surrounded by a triin, membranous sack caned the piece
	Wh	nat ar	re the functions of the pleural membranes?
	•••••		
	•••••		
	•••••		
	•••••		
3.	Sev	eral	stages in a single breath cycle are shown below.
	a)	Stat	te the role of each statement.
		i)	The intercostal muscles relax.
		ii)	The diaphragm contracts.
		iii)	rss is increased.

INSPECTION COPY



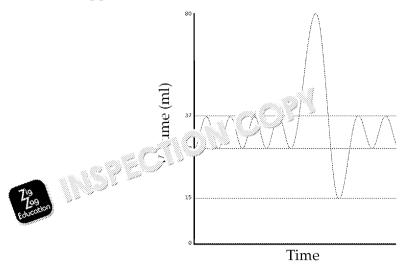
Certain conditions, such as chronic obstructive pulmonary disease (Cethe lungs.

b)	How can medics ensure a patient with COPD can access enough
	-03

4. The diagram below shall a drawing of some alveoli.

72.3	

The efficiency of the lungs can be estimated using an assembly of med


b) What name is given to this apparatus?

NSPECTION COPY

A trace from this apparatus is shown below.

The data below shows the volumes obtained from the trace above. On 1.5 seconds

Reading	Volume (mL)
Tidal Volume	560
Inspiratory Reserve Volume	3400
Residual Volume	1200
Expirator l'es me volume	1200
(i) a Capacity	
Total Lung Capacity	

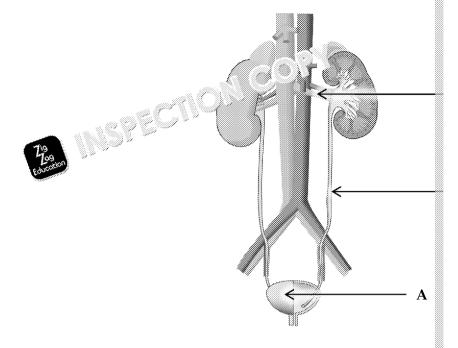
719	A.
700	on
Egneo	
The state of the s	

c)	Using the data provided in the table, calculate the vital capacity a
d)	Calculate the volume of air inhaled during normal breathing over
	Education

INSPECTION COPY

The respiratory condition asthma can be diagnosed using a modified the page above.

Peak expiratory flow is one method of diagnosing asthma.


	e)	What can be determined from peak expiratory flow measuremen
	f)	Horse to the asures differ from forced vital capacity measure
5.		lowing a period of increased exercise, there are profound difference
	bre	athes.
	a)	Describe the aspects of a spirometer trace after an individual und
		Education
	b)	Using your answers to the questions above, indicate how tidal voconsumption are related.
		consumption are related.

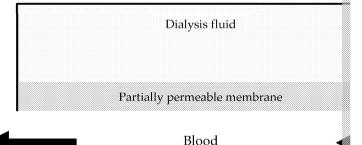
INSPECTION COPY

B3: Urinary system structure and function

1. The urinary system is shown below.

a)	What are the functions of this system?			
b)	Giv	e the name and the function of the:		
	i)	Organ labelled A		
	ii)	Tube labelled B		
	iii)	Vein labelled C		

INSPECTION COPY



The function of the kidney depends on the nephron – the microscopic How are the glomerulus and Bowman's capsule related? a) art of the nephron is glucose reabsorbed? Why is this What part of the nephron regulates the concentration of urine? Glomerulus Bowman's capsule C Proximal convoluted tubule Loop of Henle isod osmolarity is detected and controlled by the b d) **COPYRIGHT PROTECTED**

- **3.** Following kidney failure, patients are often faced with one of two option transplantation.
 - a) Why is renal dysfunction so harmful to a patient?

The difference below outlines the mechanism of renal dialysis used.

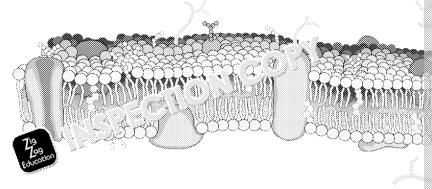
Partially permeable r embrane

Dialysis fluid

- b) Oi character iagram,
 - i) Use dotted lines to show the direction of dialysis fluid flow.
 - ii) Use solid black lines to show the direction of urea movement

INSPECTION COPY

Explain why dialysis fluid must contain the same concentration of Dialysis is used in the cater numbers of patients than transplan way many more patients will be treated with dialysis rat


INSPECTION COPY

COPYRIGHT PROTECTED

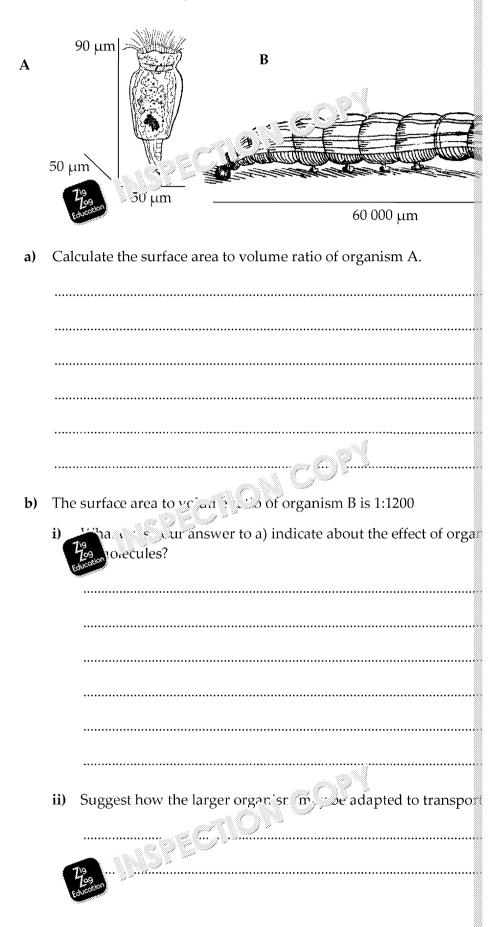
B4: Cell transport mechanisms

1. The cell surface membrane is shown below.

a)	What role do phospholipids play in the cell surface membrar					
	•••••					
	•••••	•••••				
	•••••	•••••				
	•••••	•••••				
b)	The cell surface membrane is dotted with chall terol throughout					
	i) Under what circumstances is the argumnt of cholesterol					
		A	Incressorate			
	•	42	a zreased temperature			
	7	C	Increased number of proteins			
		D	Increased size of cell			
	ii) Explain the importance of your answer to question 1.b)i).					
		•••••				
A student argues that the cell surface membrane is like a rigid wall, d						
movement of substances across the wall.						
c)	To what extent would you agree it. "e student?					

INSPECTION COPY

What is the difference between intrinsic and extrinsic membrane Explain why lipid- I ble projecules, such as caffeine, can have rewhile lipid in Salamolecules take much longer to have an effect Cells are able to acquire their required substances through a number How does facilitated diffusion differ from passive diffusion? State vo Salar Inch determine whether a substance crosses a di...asion. c) Name the method for the passive transport of water across a men **COPYRIGHT PROTECTED** Using your example from (a) e (b) and why this method is considered


Active transport is used in order to move glucose from the small intest Why do cells of the intestinal lumen contain a high density of mit The process of phagocytosis is an array of a endocytosis. This is a for Describe how an ات عوا will take up a bacterium by endocy Cells that produce hormones often secrete the hormone into a vesicle. Explain the necessity to encapsulate the hormones in a vesicle in the cell.

INSPECTION COPY

4. An illustration of two organisms is shown below.

INSPECTION COPY

C1: Thermal physics in domestic and industrial application

1.	a)	Convert the following quantities into diffe	rent units:
		i) 6500 W to kW	Z
		ii) 3.2 MW to W	Z SPE
		ii 79 SV to kW	
	b)	Select an equivalent unit for Pascal (Pa).	
		A N m	
		B N m ⁻¹	7
		C N m ⁻²	
		D N ² m ⁻¹	
2.	a)	Select the definition of the work done on a	n object.
		A The energy transferred to the object	
		B The force applied to the same and the same applied to the same a	
		C The distance of the control of the	
		1930 e Cargy dissipated from the object	
	b)	A crate is pushed 2.4 m along the ground was	vith a resultant force o
		Using an equation from the formulae shee	, calculate the work do
			COPYRIGHT PROTECTED
	c)	The box is compressed from a volume ax 11	o 1.40 m³, with cons
		Using an equation from a torname shee	, calculate the pressure
			Z ag
			Education

A motor converts 75 J into 42 J of kinetic energy. What has happened to the rest of the energy? a) Using an equation from the form ae ''.eet', calculate the efficienc A heat engine has a heat input of 660 J and a heat output of 59 J. Using an equation from the formulae sheet, calculate the efficience gine has a temperature of 550 K and the The heat sink of equation from the formulae sheet, calculate the maximu the heat engine. A light bulb converts 500 J of electrical energy to 470 J of light energy, output being heat energy. State the law of conservation of

Calculate the amount of heat energy given out by the light bulb. Using an equal k ച ്വഹിe formulae sheet, calculate the efficienc A volume of 0.77 m³ of an ideal gas contains 9.82×10^{23} molecules. The Using an equation from the formulae sheet, calculate the pressure of t Use $k = 1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}$. 7. Select an example of an isothermal process. Compression of a gas Free expansion of an ideal gas A gas increasing in the lature chance in Stude

INSPECTION COPY

b)	Sele	ct an example of an adiabatic process.
	A	Free expansion of an ideal gas
	В	Friction causing a rise in temperature
	С	A change of state
	D	A gas being compressed by an offer
a)	State the first in some modynamics.	
b)	Hea of w	t is inputted into a gas. The internal energy of the gas increasers.
	Usir	ng an equation from the formulae sheet, calculate the heat inp
	•••••	
	•••••	

ുപട് below to described idealised engi

no change

negative

An idealised engine cycle is one in which there is

volume at the start of the engine cycle will be

end of the engine cycle. The work done and change in internal energy

an idealised engine cycle never be achieved in practice?

8.

9.

c)

Fill in the gaps using the

Lange

positive

NSPECTION COPY

equal to

zero

COPYRIGHT PROTECTED

State the second law of thermodynamics.

10. a) i) Describe how a heat engine works. Give an application of a heat engine. Describe how a refrigerator works. State the general name of a device which moves heat energy from What is meant by the maximum theoretical coefficient of perform refrigerator, or heat pump? Describe how the kinetic ene 11. a) dermolecular forces in a sy melting.

Two objects at the same temperature are said to be in thermal equ What is meant by this statement? 12. a) What is meant by the term 'th 1.30 kg of water is heated from 10.0 °C to 86.0 °C. The specific heat capacity of water is 4.18 kJ kg⁻¹ K⁻¹. Using an equation from the formulae sheet, calculate the energy u Why is water useful as a coolant in it is The latent heat of fusion for cobalt is 243 kJ kg⁻¹. Using an equation from the formulae sheet, calculate the mass of melted by 615 kJ of heat at constant temperature and pressure. Why is cobalt a useful mator as high temperature processes?

INSPECTION COPY

C2: Materials in domestic and industrial applications

		
1.	a)	What is meant by 'elasticity'?
	b)	Suggest an application for a control of the high elasticity.
2.	A s	tress-strain curve for a material is shown below.
		Stress / N m ⁻²
	a)	What do stress-strain aur & wow?
		the stranger
	b)	Mark the elastic limit and yield point of the material on the stress
	c)	What is meant by the strength of a material?
	d)	Explain which part of the allest tain graph shows elastic deform shows plastic deformation.
		Edicates
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

INSPECTION COPY

Describe how creep and fatigue differ. b) Select an applia a significant highly ductile material. pporting a hanging platform Drawing the material into a wire Moulding the material into a statue As a supportive framework for a tall building Explain why highly brittle materials are not suitable for building Give an application of a malleable material. Explain why a rubber band heats up as it is stretched, and what t of this is. **COPYRIGHT PROTECTED** the name of the process described in 3.e).

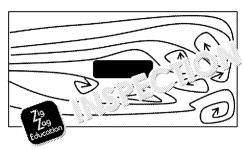
4. Match up the following quantities with their symbols and units.

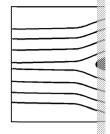
Quantity
Density
Tensile/compressive stress
Tensile/compressive strain
Young modulus

S	ymbol	
	ε	
	E	
	ρ	
	σ	

5.	Αb	block of plastic has been ay of 1.44 kg m ⁻³ and a mass of 0.550 kg.
	Usi	ng Hogya Lon from the formulae sheet, calculate the volume of th
	•••••	
	••••	
	••••	
	••••	
6.		vire with a spring constant of 5.95×10^3 N m $^{-1}$ is stretched with a for gth of 28.0 cm.
	a)	Using an equation from the formulae sheet, calculate the extension
		Estrator
	b)	The stress on the wire while it is being stressed is $32.2 \; MN \; m^{-2}$.
		Using an equation from the formulae sheet, calculate the cross-se
	c)	Using an equation from the factorial and your answer from
	-,	the wire when it is struct v
		74.9 danata
		

INSPECTION COPY


The Young modulus of a material describes how it responds to stress Using equations from the formulae sheet, write down a formula wire in terms of the dimensions of the wire and the force applied aaaa Young modulus of 210 MN m⁻². The wire is stretche stretches from 30.0 cm to 34.5 cm. Using your answer to a), calculate the cross-sectional area of the w A wire is stretched by 8.40 cm and stores an elastic energy of 2.25 Calculate the force stretching the wire. Using equations from the formulae sheet, write down an equation energy in a wire in terms of the extension of a wire and the spring A wire has a spring constant of 710 N m⁻¹ ar. '... compressed so the potential energy. Using your equation from rt > , calculate the compression of the



C3: Fluids in motion

1. Below are shown two fluid flow patterns around objects in identical p

Flow A

a) State the type of flow observed in each diagram. Explain your ans

b) Which flow object will experience a greater force if moving through Explain your answer.

c) State two factors that affect whether a flow is streamlined or turb

d) Select an example of a situation in w'act to Julent flow is preferate

A When transposing the from one place to another

Together the stirring is needed

D The flow of air around a racing car

INSPECTION COPY

COPYRIGHT PROTECTED

Zig Zag Education

What can be said about the mass of fluid flow per second in the p Two identical objects is supped through two cylinders containing the One of havings, fluid A, is significantly more viscous than the other Explain which object will reach the bottom of the fluid quicker. The fluid is heated up. Explain how this will are this speed at which the object falls thro **COPYRIGHT PROTECTED** Explain how the motion of the object would be different if it were into a non-Newtonian fluid, like cornflour

State Bernoulli's principle. b) Gas is flowing uniformly through a sealed time. More gas is add Explain how this affects the rate of the gas. A plane's wing has a larger surface area on top of the wing than l Explain how the shape of a plane's wing allows it to fly through the

INSPECTION COPY

A1: Relating properties to uses and production of sub

- 1. Metal oxides are used as heat-resistant materials, catalysts and as raw materials.
 - a) Most metal oxides are considered basic.

Copy and complete the balanced chemical equation to show how acts as a base when it reacts with hydracian cacid, HCl.

 $MgO + 2HCl \rightarrow ?$?

b) Magnesium (s) form a base called magnesium hydroxide, M

W Leaf tnese is a product when magnesium hydroxide reacts w

\mathbf{A}	H ₂ O
В	H_2
С	O ₂
D	CO ₂

- c) Al₂O₃, also known as alumina, is the raw material used to obtain
 - i) Alumina is amphoteric. What is the definition of the term 'ar

A	Can absorb water from the air	
В	Is a solid at room temperature	
С	Can dissolve in water	
D	Can act as a cac a sea base	

ii) 79 ra () of aluminium from alumina involves dissolving all orming electrolysis.

Explain why this process is expensive.

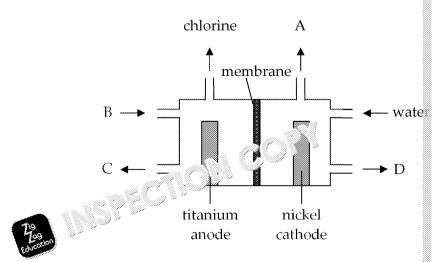
- d) Identify two uses of copper and give two properties that make it
- 2. Many metal compounds are vital in processes which shape modern li
 - a) Calcium hydroxide is used in waste water treatment. Explain how this is important.
 - b) Some transition metals and their compounds are used as catalysts. For example, iron catalyses the reaction in a process used to make oxide catalyses the reaction in the contact pressure.
 - i) State why catalysts are important in these reactions.
 - ii) State the final and it me contact process.
 - iii 1997; Feasons why it is more desirable to use iron as a include in in in including the include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable to use iron as a include it is more desirable in the include it is more desirable in
 - iv) Other than their catalytic ability, state two common properties

INSPECTION COPY

3. Bauxite is an aluminium ore.

- a) Alumina can be extracted from bauxite using sodium hydroxide.

 Describe how this process works in terms of the chemicals present
- b) Alumina can be used in refractories.


 Identify **one** property of alumina which property suitable for use
- During this processed from o make aluminium using the left the dissolve the alumina in mole that is necessary to dissolve alumina for this process to
- The extraction of titanium from its ore is a two-step process: Reaction 1 uses chlorine and another element. Reaction 2 uses magnesium.
 - a) In reaction 1, TiO₂ is converted to TiCl₄ by reacting it with chloring added.

Name the other element used in reaction 1.

- b) Write a balanced symbol equation for reaction 2, where titanium chlor
- c) Titanium is used for hip replacements, planes and specialist sparl Identify **one** property that makes it more suitable than most other
- d) The chlorine used in this process is pool in the electrolys.

 Hydrogen gas and sodia in this process are also produced in this process.
 - i) Identify in present in a solution of brine, including those
 - ii) The diagram below shows how brine can be used to create chamembrane cell.

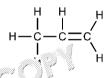
Identify suitable labels for A, B, C and D in the following dia

iii) Explain why it is advantageous to use a membrane cell for the diaphragm cell.

INSPECTION COPY

A2: Structures, reactions and properties of commercorganic compounds

1. Alkanes and alkenes are important chemicals obtained from crude oil


Alkanes can be used as fuels and lubricants, and all ness are often use and other large molecules.

a) Many alkanes and all are isomers

i) The way isomers are there of butane?

- ii) How many isomers of butane are straight-chain?
- **b)** Draw a cyclic alkene with 6 carbons.
- c) Alkanes and alkenes are homologous series which can be represed.

 Write the general formula of the alkanes.
- 2. This diagram shows propene:

- a) Identify the feature of the Shall which means that it is unsature
- b) Write he is the distructural formula for this molecule.
- 3. Methan H_{+} , is an alkane and a fuel.
 - a) Draw methane using a wedge/dash line diagram.
 - **b)** The bonding in methane can be explained using hybridisation.
 - i) Describe what is meant by the term *hybridisation*.
 - ii) Explain how hybridisation occurs in methane.
- **4.** But-2-ene is an alkene used as a fuel and as a reagent for making compounds. But-2-ene contains a double bond.
 - a) Draw the skeletal formula of bu' . e. o
 - **b)** Explain whether ... -e was a symmetric or an asymmetric alkers
 - c) D the double bond in but-2-ene in terms of sigma- and pi-l

INSPECTION COPY

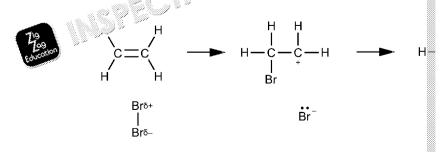
Put the following in order:

- a) Place benzene, cyclohexane, and the double bond in cyclohexene
- b) Place benzene, cyclohexane, and the double in cyclohexene
- 6. Explain how the length of a strair, with a kane affects its boiling po
- 7. Ethane, C₂H₆, reaction and termination.
 - a) Statement ey condition for the initiation stage.
 - **b)** Write reactions which occur for **two** propagation stages and **one** Propagation

Termination

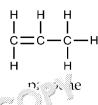
- **8.** Alkenes are an important starting material for making many other kirk Alkenes commonly react with electrophiles.
 - a) Define the term 'electrophile'.

b) Draw the structure of the product of the addition reaction between and water, H₂O.



c) Copy the diagrams below and add arrows to show the first step of addition of sulfuric acid, H₂SO₄ to ethene.

$$C = C$$


d) Copy the diagrams below a final plete the mechanism for the add

INSPECTION COPY

e) When propene reacts with hydrogen bromide, HBr, there are two

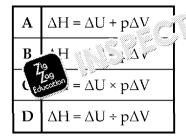
Draw the displayed formy's or a products, and predict, with a the products will be from a in the largest amount.

- 9. Some The are particularly useful for creating valuable products.
 - a) Identify the type of product when organic peroxides are added to

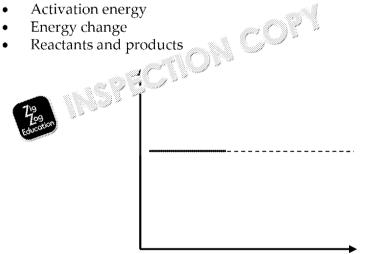
A	Alcohols
В	Polymers
С	Carboxylic acids
D	Ketones

b) Explain the purpose of cracking.

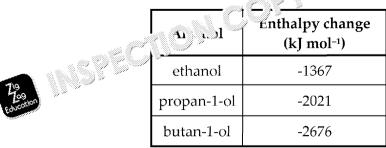
INSPECTION COPY



A3: Energy changes in industry

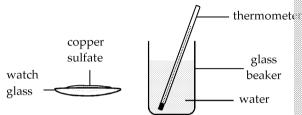

Kelvin is a scale often used to measure temperature.

Write 310 K in °C.


- Enthalpy change has the symbol ΔH .
 - Which of these is the equation for the defined on of enthalpy change

- Write the symbol for standard enthalpy change.
- What are the temperature and pressure for standard enthalpy char
- A reaction has an enthalpy change of -98 kJ mol⁻¹.
 - Explain whether this is an exothermic or endothermic process.
 - Copy the axes below and complete a reaction profile for this reaction b)
 - Labels for the axes
 - A reaction curve
 - Activation energy
 - Energy change
 - Reactants and products

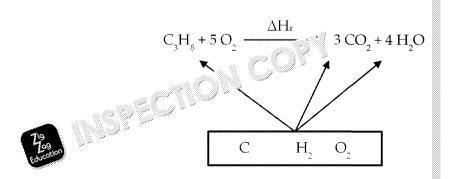
- Describe how the energy changes during an endothermic reaction in the surroundings.
- A student looks up the literature values for the entirely changes of containing


Which of these alcohols will have the largest temperature change

NSPECTION COP

b) A student attempts to find the enthalpy of combustion of propanequipment.

- i) Plan a suitable experiment to find this value.You do not need to include details of calculations in your ans
- ii) Explain why the student obtains a value. ich is lower than
- iii) Suggest one way that the an obtain a value closer to
- **6.** Enthalpy of formation in the symbol ΔH_f
 - a) S. 7 azánition of enthalpy of formation.
 - **b)** Predict the enthalpy of formation of $O_{2(g)}$.
- 7. The energy change of hydration of copper sulfate can be calculated from the following apparatus:

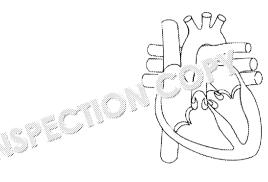


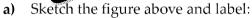
a) 4.1 g of anhydrous copper sulfate, CuSO₄, was dissolved in 0.100 In this experiment, the temperature of the case, increased by 6.0 Calculate the energy change in 3 process.

Change in energy specific heat capacity × change in temp [The ect 1 capacity of water is 4.18 kJ kg⁻¹ K⁻¹.]

b) Use are values for the enthalpy of formation to calculate the enthalph ΔH_r for the combustion reaction shown.

Compound	Standard enthalpy of format
Propane, C₃H₃	-118.9
Carbon dioxide, CO2	-393.5
Water, H2O	-285.8




INSPECTION COPY

B1: The cardiovascular system

1. The figure below is an image of a mammalian heart.

- i) The tricuspid valve (with an X)
- ii) The bicuspid valve (with a Y)
- b) Choose the heart structure that does **not** regulate heart conduction

	A	Sino-atrial node	
	В	Atrioventricular node	
	C	Bicuspid valve	
ĺ	D	Purkinje fibres	

c) Describe how the electrical signal spr s of ost the heart.

The heart is made of myog

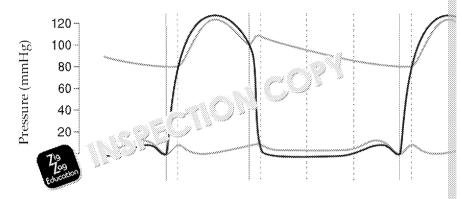
d) How is mascle different to skeletal muscle?

A patie aresting heart rate of 112 beats per minute. The stroke

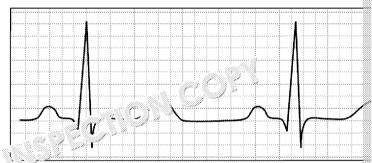
- e) What is the cardiac output of this patient? Give your answer in d
- f) Identify which statement about the ABO rhesus system is correct

A	People with the AB blood group produce anti-A and anti-B
В	Universal donors normally have the blood group AB.
С	A reaction to anti-D antibody indicates the blood is Rh
D	O blood group samples do not have ABO group antigens on the

2. Copy the table below and connect these v put Is jith their key characters.


Largest lumen
Elasticat () s
1990 faiffusion
High blood pressure
One cell thick
Contains valves

NSPECTION COPY



3. The figure below shows the pressure changes associated with the card

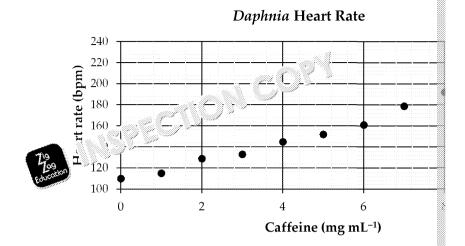
a) Copy the graph below and label, with the letters indicated:

- i) The diastole phase of the cardiac cycle (D)
- ii) The point at which the bicuspid valve closes (E)
- iii) The point at which the semilunar valve opens (F)
- b) Describe how blood pressure changes in blood vessels between tl
- **4.** Electrocardiograms (ECGs) can be used to identify changes in the hear the electrical conduction that regulates heart rhythm.

A north Education

G trace is shown above.

a) What heart condition would be represented by an ECG trace show rapid peaks?

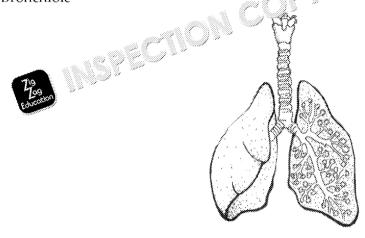

A	Bradycardia	
В	Tachycardia	
С	Arrhythmia	
D	Ectopic heartbeat	

- b) i) Sketch the trace and circle the QRS comple:
 - ii) Explain the significance of its complex
- 5. Cardiovascular disable is the single most significant killer of the
 - a) W the k actors put people at risk of cardiovascular diseases, and abbounded disease?
 - **b)** List two possible disadvantages of the use of antihypertensive mea

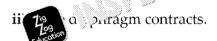
NSPECTION COPY

6. A student is investigating the effect of caffeine on the heart rate of the The results are shown below.

- a) How much caffeine is dissolved in 35 mL of water to make a 6 mg
- **b)** Explain how caffeine affects *Daphnia* heart rate, suggesting why the reach a plateau.



INSPECTION COPY


B2: Ventilation and gas exchange

- 1. Sketch and label the diagram below of the human gas exchange system
 - Alveolus
 - Trachea
 - Bronchus
 - Bronchiole

- 2. The lungs are surrounded by a thin, membranous sack called the pleus.

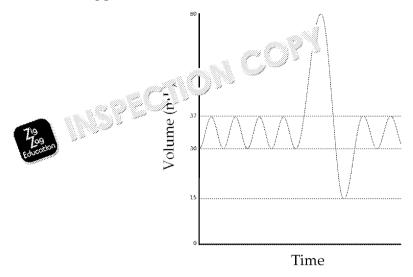
 What are the functions of the pleural membranes?
- 3. Several stages in a single breath cycle are shown below.
 - a) State the role of each statement.
 - i) The intercostal mascine wax.

iii) Pressure within the thorax is increased.

Certain conditions, such as chronic obstructive pulmonary disease (Cethe lungs.

- b) How can medics ensure a patient with COPD can access enough
- 4. The diagram below shows a drawing of some alveoli.

a) List three adaptations of the alveoli that ensure efficient exchange


INSPECTION COPY

The efficiency of the lungs can be estimated using an assembly of med

b) What name is given to this apparatus?

A trace from this apparatus is shown below.

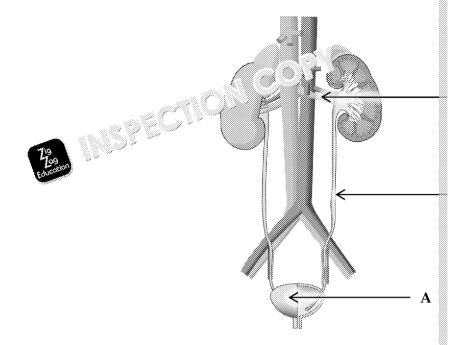
The data below shows the volumes obtained from the trace above. One 1.5 seconds

Reading	Volume (mL)
Tidal Volume	560
Inspiratory Res Land Valume	3400
Residual Ime	1200
Reserve Volume	1200
Vital Capacity	
Total Lung Capacity	

- c) Using the data provided in the table, calculate the vital capacity a
- d) Calculate the volume of air inhaled during normal breathing over

The respiratory condition asthma can be diagnosed using a modified the page above.

Peak expiratory flow is one method of diagnosing asthma.


- e) What can be determined from peak expiratory flow measuremen.
- f) How do these measures differ from for a val capacity measures
- 5. Following a period of increase 1. Acise, there are profound difference breaths.
 - a) D 4 tire aspects of a spirometer trace after an individual under
 - b) Using your answers to the questions above, indicate how tidal vo consumption are related.

INSPECTION COPY

B3: Urinary system structure and function

1. The urinary system is shown below.

- a) What are the functions of this system?
- **b)** Give the name and the function of the:
 - i) Organ labelled A
 - ii) Tube labelled B
 - iii) <u>Ve</u>in 'C' be "Ć

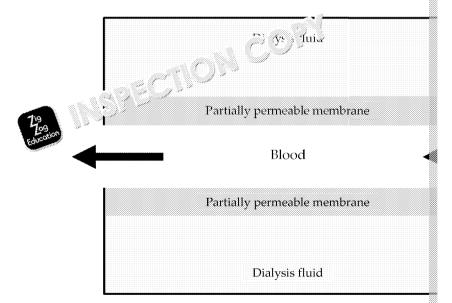
- a) How are the glomerulus and Bowman's capsule related?
- **b)** At which part of the nephron is glucose reabsorbed? Why is this
- c) What part of the nephron regulates the concentration of urine?

A	Glomerulus	
В	Bowman's capsule	
С	Proximal convoluted tubule	
D	Loop of Henle	

d) Outline how b' an introduction is detected and controlled by the b

INSPECTION COPY

The body is able to regulate blood pressure through differential control

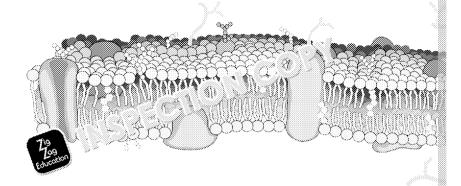

e) List the words needed to complete this description of the renin-an mechanism and complete the gaps.

3. Following kidney failure, patients are often faced with one of two optoral transplantation.

.....ions into the urine in their place.

a) Why is renal dysfunction so harmful to a patient?

The diagram below outlines the mechanism of renal dialysis used.


- **b)** Sketch the diagram and add the following:
 - i) Dotted lines to show the direction of 23. 1/5 3 fluid flow.
 - ii) Solid black lines to shov a rection of urea movement.
- c) Explain why . So shiuld must contain the same concentration of
- d) Divisis used in far greater numbers of patients than transplan Explain why many more patients will be treated with dialysis rational states.

INSPECTION COPY

B4: Cell transport mechanisms

1. The cell surface membrane is shown below.

- a) What role do phospholipids play in the cell surface membrane?
- b) The cell surface membrane is dotted with cholesterol throughout
 - i) Under what circumstances is the amount of cholesterol in the

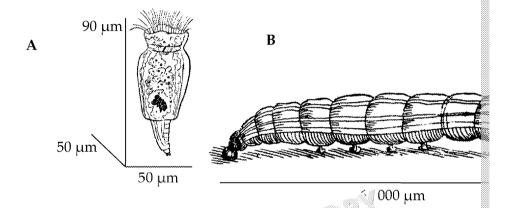
A	Increased pressure
В	Increased temperature
С	Increased number of proteins
D	Increased size of va

A student argues that the cell surface membrane is like a rigid wall, do movement of substances across the wall.

- c) To what extent would you agree with the student?
- d) What is the difference between intrinsic and extrinsic membrane
- e) Explain why lipid-soluble molecules, such as caffeine, can have rewhile lipid-insoluble molecules take much longer to have an effective
- 2. Cells are able to acquire their required substances through a number
 - a) How does facilitated diffusion differ from sive diffusion?
 - b) State two factors which do to a me whether a substance crosses a passive diffusion of the control of the con
 - c) N. De method for the passive transport of water across a men
 - **d)** Using your example from c), explain why this method is consider transport.

INSPECTION COPY

Active transport is used in order to move glucose from the small intes


Why do cells of the intestinal lumen contain a high density of mit

The process of phagocytosis is an example of endocytosis. This is a fo

Describe how an immune cell will take up a bacerium by endocy

Cells that produce hormones often s etc in a vesicle.

- ു zapsulate the hormones in a vesicle in Explain the nece
- An illustration of two organisms is shown below.

- Calculate the surface area to e ratio of organism A. a)
- Jume ratio of organism B is 1:1200
 - it does your answer to a) indicate about the effect of orga of molecules?
 - Suggest how the larger organism may be adapted to transpo

NSPECTION COP

C1: Thermal physics in domestic and industrial application

(G^O?

- 1. a) Convert the following quantities into different units:
 - i) 6500 W to kW
 - ii) 3.2 MW to W
 - iii) 14 GW to kW
 - b) Select an equitation of Pascal (Pa).

7.50 n	
В	N m-1
C	N m ⁻²
D	$N^2 m^{-1}$

2. a) Select the definition of the work done on an object.

A	The energy transferred to the object.
В	The force applied to the object.
C	The distance the object moves.
D	The energy dissipated from the object.

- b) A crate is pushed 2.4 m along to good with a resultant force of Using an equation of the formulae sheet, calculate the work do
- c) Ti 13 is compressed from a volume 3.60 m³ to 1.40 m³, with constitution an equation from the formulae sheet, calculate the pressure
- 3. A motor converts 75 J into 42 J of kinetic energy.
 - a) What has happened to the rest of the energy?
 - b) Using an equation from the formulae sheet, calculate the efficience
- 4. a) A heat engine has a heat input of 660 J and a heat output of 59 J.

 Using an equation from the formulae sheet, calculate the efficiency
 - b) The heat sink of a heat engine has a first afture of 550 K and the of 340 K.

Using an equal of them the formulae sheet, calculate the maximum them.

- 5. A light bulb converts 500 J of electrical energy to 470 J of light energy, output being heat energy.
 - **a)** State the law of conservation of energy.

INSPECTION COPY

- b) Calculate the amount of heat energy given out by the light bulb.
- c) Using an equation from the formulae sheet, calculate the efficience
- 6. A volume of 0.77 m³ of an ideal gas contains 9.82×10^{23} molecules. The Using an equation from the formulae sheet, $c_2^{-1}c_3^{-1}$ the pressure of the Use $k = 1.38 \times 10^{-23}$ m² kg s⁻² K⁻¹
- 7. a) Select an example of an sothermal process.

npression of a gas	
В	Free expansion of an ideal gas
С	A gas increasing in temperature
D	A change of state

b) Select an example of an adiabatic process.

A	Free expansion of an ideal gas
В	Friction causing a rise in temperature
С	A change of state
D	A gas being compressed h m + r

- 8. a) State the first of mermodynamics.
 - b) He inputted into a gas. The internal energy of the gas increase of work.

Using an equation from the formulae sheet, calculate the heat input

9. a) Copy the following paragraph and fill in the gaps using the word idealised engine cycles.

a change	no change	equal to
positive	negative	zero

An idealised engine cycle is one in whic as in
volume at the start of + Cogcle will be
end of the work done and change in internal energy

- **b)** State the second law of thermodynamics.
- c) Why can an idealised engine cycle never be achieved in practice?

INSPECTION COPY

10. a) i) Describe how a heat engine works.

- ii) Give an application of a heat engine.
- **b)** Describe how a refrigerator works.
- c) State the general name of a device which has beat energy from
- d) What is meant by the war is a theoretical coefficient of perform refrigerator, 2 is a pump?
- 11. a) Down how the kinetic energy and intermolecular forces in a sympleting.
 - b) Two objects at the same temperature are said to be in thermal equivalent what is meant by this statement?
- **12.** a) What is meant by the term 'thermal capacity'?
 - **b)** 1.30 kg of water is heated from 10.0 °C to 86.0 °C.

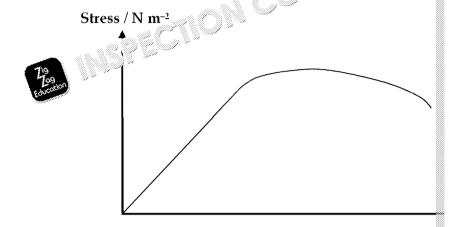
The specific heat capacity of water is 4.18 kJ kg⁻¹ K⁻¹.

Using an equation from the formulae in et valculate the energy u

- c) Why is water useful and commit in industry?
- d) T 13 nt 2at of fusion for cobalt is 243 kJ kg-1.

Using an equation from the formulae sheet, calculate the mass of melted by 615 kJ of heat at constant temperature and pressure.

e) Why is cobalt a useful material for high temperature processes?



INSPECTION COPY

C2: Materials in domestic and industrial applications

- **1. a)** What is meant by 'elasticity'?
 - b) Suggest an application for a material with high elasticity.
- 2. A stress-strain curve for a material is shown 'C'.

- a) What do stress-strain curves show?
- **b)** Copy the graph and mark the elastic limit and yield point of the recurve.
- c) What is meant by the strength of a mane (a)
- d) Explain which part fare it is strain graph shows elastic deform shows plastic of it, atton.
- 3. a) De description how creep and fatigue differ.
 - **b)** Select an application of a highly ductile material.

A	Supporting a hanging platform
В	Drawing the material into a wire
С	Moulding the material into a statue
D	As a supportive framework for a tall building

- c) Explain why highly brittle materials are which ble for building
- **d)** Give an application of 2, 1, 1, 2, 2, material.
- e) Exploser band heats up as it is stretched, and what to
- **f)** State the name of the process described in 3.e).

4. Match up the following quantities with their symbols and units.

Quantity
Density
Tensile/compressive stress
Tensile/compressive strain
Young modulus

	Symbol	
	ε	
- 33	E	
	ρ	
	σ	

- 5. A block of plastic land a censity of 1.44 kg m⁻³ and a mass of 0.550 kg.

 Using the plastic land a censity of 1.44 kg m⁻³ and a mass of 0.550 kg.
- 6. A wire with a spring constant of 5.95×10^3 N m⁻¹ is stretched with a follength of 28.0 cm.
 - a) Using an equation from the formulae sheet, calculate the extension
 - b) The stress on the wire while it is being stressed is 32.2 MN m^{-2} .

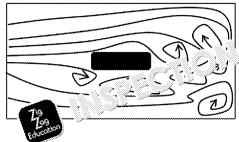
Using an equation from the formulae sheet, calculate the cross-se

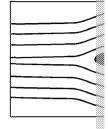
- c) Using an equation from the formulae sheet and your answer from the wire when it is stretched.
- 7. The Young modulus of a material a libes how it responds to stress
 - a) Using equation 3 and a formulae sheet, write down a formula for wire tended and the force applied a
 - b) A mas a Young modulus of 210 MN m⁻². The wire is stretched the wire stretches from 30.0 cm to 34.5 cm.

Using your answer to a), calculate the cross-sectional area of the ψ

- **8. a)** A wire is stretched by 8.40 cm and stores an elastic energy of 2.25 Calculate the force stretching the wire.
 - b) Using equations from the formulae sheet, write down an equation energy in a wire in terms of the extension of a wire and the spring
 - c) A wire has a spring constant of 710 N m is compressed so the potential energy.

Using your equetion part b), calculate the compression of the


INSPECTION COPY



C3: Fluids in motion

1. Below are shown two fluid flow patterns around objects in identical p

Flow A

- a) State the type of flow observed in each diagram. Explain your an
- b) Which flow object will experience a greater force if moving throus Explain your answer.
- c) State two factors that affect whether a flow is streamlined or turb
- d) Select an example of a situation in which turbulent flow is preferal

A	When transporting fuel from one place to another
В	When spraying paint
С	When stirring is needed
D	The flow of air around and a g car

- e) Whereard about the mass of fluid flow per second in the p
- 2. Two identical objects are dropped through two cylinders containing to One of the fluids, fluid A, is significantly more viscous than the other
 - a) Explain which object will reach the bottom of the fluid quicker.
 - **b)** The fluid is heated up.

 Explain how this will affect the speed at which the object falls three
 - c) Explain how the motion of the object would be different if it were into a non-Newtonian fluid, like cornflour mixture.
- 3. a) State Bernoulli's principle.
 - b) Gas is flowing the following the flow of the gas.

 E The heart affects the rate of flow of the gas.
 - c) A plane's wing has a larger surface area on top of the wing than be Explain how the shape of a plane's wing allows it to fly through th

INSPECTION COPY

Answers

A1: Relating properties to uses and production of substances

Question	Answer	
1a	MgCl ₂ H ₂ O	
1b	A H ₂ O	
1ci	D Can act as day a pase	
1cii	rg as of electricity used to generate heat heat heat heat heat are the service of	
1d	Any 2 uses, Any relevant properties: In wires Electrically conductive In pans (etc.) Thermally conductive Coins Low reactivity Building (e.g. roofs) Unreactive/strong	
2a	 Any two: Neutralises acidic effluent To avoid corrosion of me'ri pi₁ ac Acids are harm⁶ in the avaronment Acids are harmans / shouldn't be drunk 	
2bi	Increase the rate More product in a given time Lower temperature can be used	
2bii	Sulfuric acid	
2biii	 Iron may work better Iron is less expensive	
2biv	Any two: Variable oxidation state Form complexes Form coloured compounds	
3a	 Any six from: Bauxite contains a mixture of oxides Alumina is soluble in sodium by lox sium hydroxide (alumina is / o' lox sium aium hydroxide (alumina is / o' lox sium hy	
3b	High melting point OR Thermal insulator	
3c	To form a mixture with a lower melting point	

INSPECTION COPY

Question	Answer
4a	Carbon
4b	$TiCl_4 + 2Mg \rightarrow 2MgCl_2 + Ti$
4c	Any one:Low densityUnreactive
4di	CI-, Na+ H+, OH-
4dii	A – hydroge sted) salt solution / water, d.arte/used salt water / solution sodium hydroxide
4diii	Diaphragm cell produces impure/contaminated sodium hydroxid OWA

INSPECTION COPY

A2: Structures, reactions and properties of commercially important organic

Question	Answer
1ai	Two
1aii	One
1b	Six-carbon ring with correct number of hydrogen atoms double bond H H C C H H H H H H H H H
1c	C_nH_{2n+2}
2a	Double bond
2b	CH ₃ CHCH ₂
3a	H CH4 COrrect wedge, dash and lines
3bi	Orbitals mix/combine to form new 'hybrid' orbitals.
3bii	The s and the three p orbitals on carbon 's ic se to form four sp³ orbitals.
4a	
4b	Symmetrice of the double bond et a compared by the same substituents/groups.
4c	Made up of a sigma and a pi bond
5a	Order of length is: Longest: cyclohexane benzene
5b	Shortest: double bond in cyclohexene Order of strength is: Strongest: double bond in cyclohexene benzene Weakest: cyclohexane
6	 Longer chains give higher boiling point More electrons Stronger van der Waals forces
7a	UV light / bright sunlight
7b	Propagation • $C_2H_6 + Cl^{\bullet} \rightarrow C^{\bullet} + Cl^{\bullet}$ • $C_2H_5^{\bullet} + Cl^{\bullet} \rightarrow C_2H_5 + Cl^{\bullet}$ Propagation • $C_2H_5^{\bullet} + Cl^{\bullet} \rightarrow C_2H_5 + Cl^{\bullet}$ • $C_2H_5^{\bullet} + Cl^{\bullet} \rightarrow C_2H_5 + Cl^{\bullet}$ • $C_2H_5^{\bullet} + C_2H_5^{\bullet} \rightarrow C_4H_{10}$ • $Cl^{\bullet} + Cl^{\bullet} \rightarrow Cl_2$
8a	Lone pair acceptor
- Gu	20110 pair acceptor

INSPECTION COPY

Question	Anavyon
Question	Answer
8b	H H
8c	Ho $C = C$ Ho Ho Ho O S O Arrow from C=C to H Curly arrow from O-H to O
8d	H H H H H H H H H H H H H H H H H H H
8e	H H C-C-C-C-H H H H H H H H H H H
9a	B Polymers
	Converts long-chain alkanes in crude oil
9b	into short-chain alkanes

The Market Strategic Copy

which are more useful / in high demand.

INSPECTION COPY

A3: Energy changes in industry

Question	Answer	
1	310 – 273 = 37 °C	
2a	$\mathbf{A} \Delta \mathbf{H} = \Delta \mathbf{U} + \mathbf{p} \Delta \mathbf{V}$	
2b	ΔΗ•	
2c	298 K 1 × 10 ⁵ Pa OR 100 I	
3a	Exother : (a) se the value is negative	
3b	Reactants Progress Labels for the axes Curve goes higher the analytic and product lines and ends a Activation congress to the axes.	
4	Energy at Jasnown I Lacks lower than reactants tem: increases	
4	Surroundings: decreases	
5a	Butan-1-ol	

INSPECTION COPY

Question	Answer	
5bi	One each: Burn propan-1-ol in a spirit burner Under a beaker of water Water known mass/volume Measure temperature change in the water Using a thermometer Weigh mass of spirit burner be or and after Award relevant of spirit burner beaker beaker spirit burner propan-1-ol	
5bii	Because heat will be lost / temperature change won't be as high	_
5biii	 Any one: Insulate the flask/container/beaker Move the flame closer to the water 	
6a	The enthalpy change where the substance is formed in its sternia to the standard state. The enthalpy change where the substance is formed in its standard state.	
6b		
7a	ange in energy = $0.1 \times 4.18 \times 6.0$ = 2.5 kJ	
7b	$\Delta H_r = (3 \times -393.5) + (4 \times -285.8) + 118.9$ = -2204.8 kI mol ⁻¹	

= -2204.8 kJ mol⁻¹

B1: The cardiovascular system

Question	Answer
1a	X X X X X X X X X X X X X X X X X X X
1b	edication cuspid valve
1c	Sino-atrial node excites the left atrium Triggers atrioventricular node Conducts along bundle of His towards base of heart Passes along Purkinje fibres through ventricles
1d	Excitation originates within muscle tissue in myogenic muscle Skeletal muscle relies on excitation from motor nerve
1e	$70 \text{ mL} = 0.07 \text{ dm}^3$ $0.07 \times 112 = 7.84 \text{ dm}^3 \text{ min}^{-1}$
1f	O blood group samples do not have ABO group antigens on the cel
2	Largest lumen Highly elasticated Site of diff on A A One cell thick Contains valves Can
3a	The second of th
3b	(Blood pressure is high a carta) It decreases the analysis in capillaries. The at the property of the capillaries are as a slightly entering veins, but never reaches arterial pressure.
4a	Zachycardia

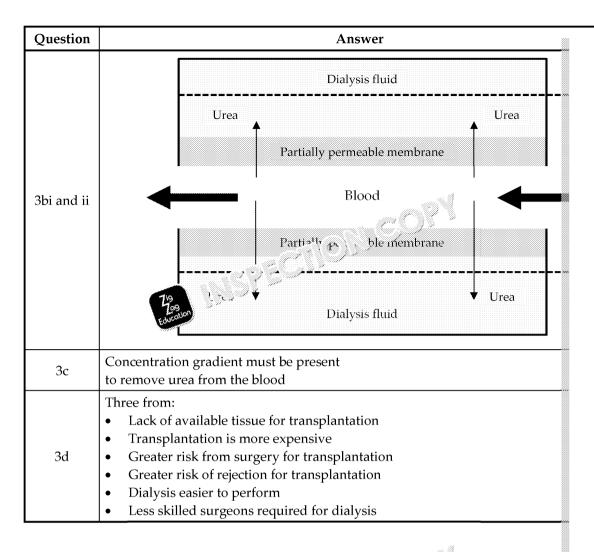
INSPECTION COPY

Question	Answer		
4bi			
4bii	QRS representing a strain of the ventr		
5a	3 (5–6) – An extensive list of risk metors, with reasons suggested Level 2 (3–4) – An attempt at a list of risk factors, with some reasons suggested Level 1 (1–2) – Some risk factors mentioned, without mention of reasons Level 0 – No response, or none worthy of marks	Genetics – might code for related to CVD Age – old age leads to wand vessels Gender – men are at a had been poor diet / obesity atherosclerosis and to dialso lead to CVD High BP – can damage endothelium Smoking – leads to deport of the control of	
5b	 (Some are) unsuitable duri o or or ancy (Some can) raise or an individual assium / blood sugar levels (Some car and a potence (Some can) cause tiredness / slow heartbeat / diarrhoea / nausea Some can) disturb sleep 		
6a	$6 \times 35 = 210 \text{ mg}$		
6b	Caffeine causes an increase in heart rate. This will eventually plateau, as the heart w The <i>Daphnia</i> will die, or there will be insuf		

contraction.

Question	Answer	
1	Trachea Bronchus Bronchiole Alveolus	
2	They reduce friction (lubrication). They protect the lungs (cushioning).	
3ai	Recoil of muscles causes ribcage to drop / move inwards and ribcage decrease	
3aii	Contraction causes diaphragm to lower and ribcage volume to incre	
3aiii	Causes air to be pushed out of the lungs	
3b	Use a (mechanical) ventilator	
4a	 Three from: Proximity to blood flow Capillary walls one cell thick Large surface area Tissues are rest Steep 1 for gradient 	
4b	7 ⁹ on }2r = -	
4c	Expiratory reserve + tidal volume + inspiratory reserve = 560 + 1200 + 3400 = 5160 mL Total lung capacity Residual volume + vital capacity = 5160 + 1200 = 6360 mL	
4d	$5 \times 60 = 300 / 1.5 = 200$ breaths in five minutes $200 \times 560 = 112\ 000$ mL of air	
4e	Maximum speed of expiration <i>OR</i> Maximum expiratory force	
4f	Vital capacity is how much air can fill the lungs. Peak expiratory flow is how quickly this air can be expelled.	
5a	Four from: Increased frequency of peaks or spill recer Increased tidal volume Increased brent and record reserve volume Decreased expiratory reserve volume Jo change to vital capacity No change to total lung volume	
5b	Oxygen consumption is the amount of oxygen used. Tidal volume is the amount of air inhaled. As a result, both are positively correlated as increased oxygen constincreased inhalation.	

B3: Urinary system structure and function


Question	Answer		
1a	Excretion of harmful/toxic breakdown products Osmoregulation (control of the water potential of blood)		
1bi	Bladder Storage of urine before elimination from the solution of the solution		
1bii	Ureter Transport of urine from (killey to the bladder		
1biii	Renal vein		
2a	man's capsule surrounds the	e glomerulus Iomerular filtrate	
2b	Proximal convoluted tubule Glucose is rapidly lost in glomerular filtrate, and must be reabsorbe respiration		
2c	Loop of Henle		
2d	Level 3 (5–6 marks) A clear and methodical explanation covering most points Level 2 (3–4 marks) An attempt at explanation, but lacking methodical approach and many points absent Level 1 (1–2 marks) Some correct Some correct To a put The company of marks	 Hypothalamus detects water ADH produced by the hypoth secreted into the pituitary gla When water potential is decreased into blood stream ADH is carried to nephron ADH causes channels that resort Chest an increase in the amore reabsorbed. More concentrated urine Less urine volume Negative feedback Upon increase in water potent secretion is stopped Fewer channels open Less water reabsorbed Urine less concentrated More urine volume 	
2e	Sodium (Na+) Sodium (Na+) Renin Angiotensin Constrict Increase Sodium (Na+) Potassium (K+)		
3a	Build-up of toxic product to the Unable to control of the Control		

INSPECTION COPY

Marles

B4: Cell transport mechanisms

Question	Answer		
1a	Form a bilayer Separating the fluids on the outside and inside of the membrane		
1bi	Increased temperature		
1bii	Increases its stability + (/prevents the co ³ /1. 4 b rsting)		
1c	Disagree: The membrane is no action and a duid, hence fluid mosaic model. Agree: Agr		
1d	sic proteins cross both layers of the bilayer. Extrinsic proteins are embedded in the bilayer but do not cross.		
1e	Lipid soluble molecules are able to cross the lipid bilayer, entering cresistance. Lipid insoluble molecules require receptors/channels in order to entering they are reliant on membrane proteins.		
2a	Facilitated diffusion requires transmembrane / transport proteins / passive diffusion acts without transport proteins.		
2b	Two from: Solubility Size Polarity		
2c	Osmosis		
2d	 Two from: Does not require transport telements. Water is able to the transe. Water representation 		
3a	e transport requires energy, which is provided by mitochondr		
3b	Membrane changes shape Engulfs the bacterium Forms vesicle in which the bacterium is enclosed		
3c	Hormones are not fat soluble Enclosed in vesicle to cross the membrane		
4a	Amoeba: Volume = $50 \times 50 \times 90 = 225\ 000$ Surface area = $2(50 \times 50) + 2(50 \times 90) + 2(50 \times 90) = 23\ 000$ Ratio = $23\ 000:225\ 000 = 1:9.78$		
4bi	Increasing size causes increased ratio. Increased ratio decreases transport efficienc. Greater sized animals have necessity and transport systems.		
4bii	One from: Needs specialise gar.		

INSPECTION COPY

C1: Thermal physics in domestic and industrial applications

Question	Answer
1ai	6.5 kW
1aii	3 200 000 W
1aiii	14 000 000 kW
1b	C. N m-2
2a	A. The energy transferr a coject
2b	$ \Delta W = F\Delta s \Delta W = 8C $
2c	$p = \frac{\Delta W}{\Delta v}$ $p = \frac{3080}{3.60 - 1.40}$ $p = 1400 \text{Pa}$
3a	Converted into other forms of waste energy (such as heat and sou
3b	efficiency = $\frac{\text{useful energy output}}{\text{total energy input}}$ efficiency = $\frac{42}{75}$ efficiency = 0.56 (or 56 %)
4a	efficiency = $1 - \frac{Q_{out}}{Q_{in}}$ efficiency = $1 - \frac{59}{660}$ efficiency = 0.91 (or 91%)
4b (8	efficiency = $1 - \frac{340}{550}$ $\frac{1}{3} - \frac{340}{550}$
5a	Energy cannot be created or destroyed, only converted between different forms.
5b	input energy = light energy + heat energy heat energy = input energy – light energy heat energy = 500 – 470 heat energy = 30 J
5с	efficiency = $\frac{\text{useful energy output}}{\text{total energy input}}$ efficiency = $\frac{470}{500}$ efficiency = 0.94 (or 94 %)
6	efficiency = 0.94 (or 94 %) $pV = NkT$ $T = 38 °C = 21$ $p = \frac{NkT}{2}$ $p = \frac{NkT}{2}$ $p = 5500 \text{ Pa}$
7a	D. A change of state
	· · · · · · · · · · · · · · · · · · ·

INSPECTION COPY

Question	Answer		
7b	A. Free expansion of an ideal gas		
8a	The heat into a system is equal to the sum of the work done on the change in internal energy of the system. $(\Delta Q = \Delta U + \Delta W)$		
8b	$\Delta Q = \Delta U + \Delta W$ $\Delta Q = 35 + 27$ $\Delta Q = 62 \text{ J}$		
9a	In order:		
9b	The disorder (entropy) of a system will always increase over time.		
9c	Heat cannot be transferred into work perfectly due to disorder inc		
10ai	It converts thermal energy into work / kinetic energy by heating a gas (or liquid) which expands (and does work).		
10aii	One from:Car enginePower plantPiston		
10b	It cools a gas/liquid by allowing the gas/liquid to do work by expanding which decreases the internal energy (and tage) returns).		
10c	Heat pump		
10d	(The maximum theory and contribution of performance is) the higher of heat supply a fraction of the work required.		
11a	etic energy of molecules remains constant.		
11b	No heat is transferred between the objects when in contact.		
12a	How much heat is required to induce a change in the system		
12b	$\Delta Q = mc\Delta T \Delta Q = 1.30 \times 4.18 \times 10^3 \times (86.0 - 10.0) \Delta Q = 413 \text{ kJ}$		
12c	Can absorb a lot of energy without a large increase in temperature		
12d	$\Delta Q = \Delta mL$ $\Delta m = \frac{\Delta Q}{L}$ $\Delta m = \frac{615 \times 10^3}{243 \times 10^3}$ $\Delta m = 2.53 \text{ kg}$		
12e	Can absorb a lot of energy with unithing state		
Can absorb a lot of energy with au the long state			

C2: Materials in domestic and industrial applications

Question	Answer	
1a	The ability of an object to return to its original shape after being de	
1b	 One from: Flexible seals Bandages Wet suits Allow any fice ca which requires a change of shape 	
2a	Town of orgifect deforms for a given force the oradient shows little deformation (and vice versa)	
2b	mark for elastic limit marked at end of linear section 1 mark for yield point marked at turning point of curved section Stress / N m ⁻² Yield point Elastic limit	
2 c	How well the rill esists deformation due to an applied force	
2d	e Section is elastic.	
3a	Creep is from stress from constant forces (i.e. weight). Fatigue is stress from repetitive motion.	
3b	B. Drawing the material into a wire	
3с	Brittle materials fracture easily under stress so a structure will collapse.	
3d	 One from: Ceramics Moulds Temporary uses (e.g. holding something in place) Can be moulded into shape (useful for tools, etc.) 	
3e	(As a rubber band is stretched) the differer. lecules rub against causing internal friction. This causes energy to be control and the rubber	
3f	Llys+2 v S	

INSPECTION COPY

4 Young modulus $V = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$	Question	Answer	
Tensile/compressive stress Tensile/compressive stress Tensile/compressive strain Young modulus $V = \frac{1}{M}$ Young modulus $V = \frac{0.550}{1.44}$ $V = 0.382 \text{ m}^{3}$ $F = kx$ $x = \frac{F}{k}$ $x = \frac{F}{k}$ $x = \frac{550}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $\sigma = \frac{F}{A}$ $A = \frac{F}{0.280}$ $E = \frac{0.0588}{0.280}$ $E = 0.210$ $E = \frac{\pi}{A\Delta x}$ $A = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{5} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$		Quantity Symbol	τ
Tensile/compressive stress Tensile/compressive strain Young modulus $V = \frac{0.550}{1.44}$ $V = 0.382 \text{ m}^{3}$ $F = kx$ $x = \frac{F}{k}$ $x = \frac{5.95 \times 10^{3}}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $G = \frac{F}{4}$ $A = \frac{F}{6}$ $A = \frac{6}{350}$ $A = \frac{350}{32.2 \times 10^{5}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $E = \frac{A^{2}}{4\Delta x}$ $E = \frac{F^{2}}{A\Delta x}$ $A = \frac{F^{2}}{E^{2}}$ $A = \frac{F^{2}}{4\Delta x}$ $A = \frac{F^{2}}{E^{2}}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$			_ N
Tensile/compressive strain Young modulus $V = \frac{1}{0.550}$ $V = \frac{0.550}{1.44}$ $V = 0.382 \text{ m}^{3}$ $V = \frac{F}{k}$ $x = \frac{F}{k}$ $x = \frac{5}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $\sigma = \frac{F}{k}$ $A = \frac{\sigma}{3.50}$ $A = \frac{3.50}{3.2.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{0.0588}{0.280}$ $\varepsilon = 0.210$ $E = \frac{\sigma}{4A\Delta x}$ $E = \frac{A}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{-6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$			\sim N
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			No
$V = \frac{0.550}{1.44}$ $V = 0.382 \text{ m}^{3}$ $F = kx$ $x = \frac{F}{k}$ $x = \frac{5}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $\sigma = \frac{F}{4}$ $A = \frac{7}{\sigma}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{0.210}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{A\Delta x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{1.32 \times 10^{-5} \text{ m}^{2}}{210 \times 10^{-2} - 30.0 \times 10^{-2}}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$	4	Young modulus	—_ kૄ
$V = \frac{0.550}{1.44}$ $V = 0.382 \text{ m}^{3}$ $F = kx$ $x = \frac{F}{k}$ $x = \frac{5}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $\sigma = \frac{F}{4}$ $A = \frac{7}{\sigma}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{0.210}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{A\Delta x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{1.32 \times 10^{-5} \text{ m}^{2}}{210 \times 10^{-2} - 30.0 \times 10^{-2}}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$			
$V = \frac{0.550}{1.44}$ $V = 0.382 \text{ m}^{3}$ $F = kx$ $x = \frac{F}{k}$ $x = \frac{5}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $\sigma = \frac{F}{4}$ $A = \frac{7}{\sigma}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{0.210}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{A\Delta x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{1.32 \times 10^{-5} \text{ m}^{2}}{210 \times 10^{-2} - 30.0 \times 10^{-2}}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$			
$V = \frac{0.550}{1.44}$ $V = 0.382 \text{ m}^{3}$ $F = kx$ $x = \frac{F}{k}$ $x = \frac{5}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $\sigma = \frac{F}{4}$ $A = \frac{7}{\sigma}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{0.210}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{A\Delta x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{1.32 \times 10^{-5} \text{ m}^{2}}{210 \times 10^{-2} - 30.0 \times 10^{-2}}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$			
$V = \frac{0.550}{1.44}$ $V = 0.382 \text{ m}^{3}$ $F = kx$ $x = \frac{F}{k}$ $x = \frac{5}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $\sigma = \frac{F}{4}$ $A = \frac{7}{\sigma}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{0.210}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{A\Delta x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{1.32 \times 10^{-5} \text{ m}^{2}}{210 \times 10^{-2} - 30.0 \times 10^{-2}}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$			
$V = \frac{0.550}{1.44}$ $V = 0.382 \text{ m}^{3}$ $F = kx$ $x = \frac{F}{k}$ $x = \frac{5}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $\sigma = \frac{F}{4}$ $A = \frac{7}{\sigma}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{0.210}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{A\Delta x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{1.32 \times 10^{-5} \text{ m}^{2}}{210 \times 10^{-2} - 30.0 \times 10^{-2}}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$	•	$\mathcal{L}_{0,0}^{0} = \frac{1}{V}$	
6a $F = kx$ $x = \frac{F}{k}$ $x = \frac{350}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $\sigma = \frac{F}{A}$ $A = \frac{F}{\sigma}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{0.280}$ $\varepsilon = 0.210$ $F = \frac{F}{A}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$		$\frac{m}{\rho}$	
6a $F = kx$ $x = \frac{F}{k}$ $x = \frac{350}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $\sigma = \frac{F}{A}$ $A = \frac{F}{\sigma}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{0.280}$ $\varepsilon = 0.210$ $F = \frac{F}{A}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$	5	$V = \frac{0.550}{1.44}$	
6a $x = \frac{F}{k}$ $x = \frac{350}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $6b \frac{F}{A} = \frac{F}{\sigma}$ $A = \frac{F}{\sigma}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $6c \frac{E}{\omega} = \frac{\Delta x}{0.280}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{\Delta x}$ $E = \frac{A \times x}{\Delta x / x}$ $E = \frac{A \times x}{\Delta x / x}$ $E = \frac{A \times x}{\Delta x / x}$ $E = \frac{F \times x}{A \Delta x}$ $A = \frac{F \times x}{E \Delta x}$ $A = \frac{F \times x}{E \Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$		$V = 0.382 \text{ m}^3$	
6a $x = \frac{F}{k}$ $x = \frac{350}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $6b \frac{F}{A} = \frac{F}{\sigma}$ $A = \frac{F}{\sigma}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $6c \frac{E}{\omega} = \frac{\Delta x}{0.280}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{\Delta x}$ $E = \frac{A \times x}{\Delta x / x}$ $E = \frac{A \times x}{\Delta x / x}$ $E = \frac{A \times x}{\Delta x / x}$ $E = \frac{F \times x}{A \Delta x}$ $A = \frac{F \times x}{E \Delta x}$ $A = \frac{F \times x}{E \Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$		E = kx	
6a $x = \frac{k}{5.95 \times 10^{3}}$ $x = 58.8 \times 10^{-3} \text{ m}$ $\sigma = \frac{F}{A}$ $A = \frac{F}{G}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{0.0588}{0.280}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{A\Delta x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{B\Delta x}$ $A = \frac{Fx}{B\Delta x}$ $A = \frac{Fx}{B\Delta x}$ $A = \frac{Fx}{B\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$		F	
$x = 58.8 \times 10^{-3} \text{ m}$ $\sigma = \frac{F}{A}$ $A = \frac{F}{\sigma}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{x}$ $\varepsilon = \frac{0.0588}{0.280}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{A\Delta x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$	6a	k 350	
6b $ \frac{\sigma = \frac{F}{A}}{A} = \frac{F}{\sigma} $ $ A = \frac{1.09 \times 10^{-5} \text{ m}^2}{A} $ 6c $ \frac{\varepsilon = \frac{\Delta x}{x}}{\varepsilon} $ $ \varepsilon = \frac{0.0588}{0.280} $ $ \varepsilon = 0.210 $ 7a $ \frac{F}{E} = \frac{\sigma}{A\Delta x} $ $ E = \frac{Fx}{A\Delta x} $ $ A = \frac{Fx}{E\Delta x} $ $ A = \frac{Fx}{E\Delta x} $ $ A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^6 \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})} $ $ A = 1.32 \times 10^{-5} \text{ m}^2 $		$\chi = \frac{1}{5.95 \times 10^3}$	
6b $A = \frac{\frac{F}{\sigma}}{\sigma}$ $A = \frac{350}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{x}$ $\varepsilon = \frac{0.0588}{0.280}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{\Delta x/x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$		$x = 58.8 \times 10^{-5} \text{ m}$	
6b $A = \frac{\sigma}{350}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{x}$ $\varepsilon = \frac{0.0588}{0.280}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{\Delta x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$		$\sigma = \frac{r}{A}$	
$A = \frac{1.09 \times 10^{-5}}{32.2 \times 10^{6}}$ $A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{x}$ $\varepsilon = \frac{0.0588}{0.280}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{\Delta x/x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$	(1	$A = \frac{F}{\sigma}$	
$A = 1.09 \times 10^{-5} \text{ m}^{2}$ $\varepsilon = \frac{\Delta x}{x}$ $\varepsilon = \frac{0.0588}{0.280}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$	66	$A = \frac{350}{300 \times 10^6}$	
$\varepsilon = \frac{\Delta x}{x}$ $\varepsilon = \frac{0.0588}{0.280}$ $\varepsilon = 0.210$ $F = \frac{\sigma}{\Delta x/x}$ $E = \frac{\frac{\pi}{A\Delta x}}{\frac{\Delta x}{A\Delta x}}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$		$A = 1.09 \times 10^{-5} \text{ m}^2$	
$\varepsilon = 0.210$ $F = \frac{\sigma}{\Delta x/x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$			
$\varepsilon = 0.210$ $F = \frac{\sigma}{\Delta x/x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$,	$\mathcal{E} = \frac{1}{x}$	
7a $ \frac{F}{F} = \frac{\sigma}{\Delta x/x} $ $ E = \frac{Fx}{A\Delta x} $ $ A = \frac{Fx}{E\Delta x} $ $ A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})} $ $ A = 1.32 \times 10^{-5} \text{ m}^{2} $	6C	0.280	
7a $ \frac{\frac{1}{2} \frac{1}{\Delta x/x}}{E = \frac{\frac{1}{2} \frac{1}{\Delta x}}{A\Delta x}} $ $ E = \frac{Fx}{A\Delta x} $ $ A = \frac{Fx}{E\Delta x} $ $ A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})} $ $ A = 1.32 \times 10^{-5} \text{ m}^{2} $		· · · · · · · · · · · · · · · · · ·	
$E = \frac{Fx}{A\Delta x}$ $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$	-	$F = \frac{\sigma}{2}$	
7b $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$	7a		
7b $E = \frac{Fx}{A\Delta x}$ $A = \frac{Fx}{E\Delta x}$ $A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$	E		
$A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$		$A\Delta x$	
$A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$		$E = \frac{1}{A\Delta x}$	
$A = \frac{{}^{415 \times 30.0 \times 10^{-2}}}{{}^{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}}$ $A = 1.32 \times 10^{-5} \text{ m}^{2}$	7h	$A = \frac{1}{E\Delta x}$	
$A = 1.32 \times 10^{-5} \text{ m}^2$	7.0	$A = \frac{415 \times 30.0 \times 10^{-2}}{210 \times 10^{6} \times (34.5 \times 10^{-2} - 30.0 \times 10^{-2})}$	
$\Delta F_{\perp} = \frac{1}{2} F \Delta \gamma$			
I Dital - I DA		$\Delta E_{el} = \frac{1}{2} F \Delta x$	
$F = \frac{2\Delta E_{el}}{2}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
8a $F = \frac{2\Delta E_{el}}{\Delta x} F = \frac{2 \times 2.25}{8.40 \times 10^{-2}}$	8a	$\begin{array}{c} \Gamma - \frac{\Delta x}{\Delta x} \\ = 2 \times 2.25 \end{array}$	
$F = \frac{1}{8.40 \times 10^{-2}}$		$F = \frac{1}{8.40 \times 10^{-2}}$	
F = 53.6 N		F = 53.6 N	
$\Delta E_{el} = \frac{1}{2} F \Delta x$		$\Delta E_{el} = \frac{1}{2}F\Delta x$	
$F = k\Delta x$	01	$F = k\Delta x$	
8b $\Delta E_{el} = \frac{1}{2} k \Delta x \Delta x$	8b	$\Delta E_{el} = \frac{1}{2} k \Delta x \Delta x$	
$\Delta E_{el} = \frac{1}{2}$		$\Delta E_{el} = \frac{1}{2} \sqrt{\sqrt{2}}$	
8b $ \Delta E_{el} = \frac{1}{2} F \Delta x $ $ F = k \Delta x $ $ \Delta E_{el} = \frac{1}{2} k \Delta x \Delta x $ $ \Delta E_{el} = \frac{1}{2} k \Delta x \Delta x $ $ \Delta E_{el} = \frac{1}{2} k \Delta x \Delta x $ $ \Delta E_{el} = \frac{1}{2} k \Delta x \Delta x $		$T_{00} = \frac{1}{2} b(\Delta x)^2$	
2 ((12)	E	2 1 (1)	
8c $\Delta x = \sqrt{\frac{2\Delta E_{el}}{k}}$ $\Delta x = \sqrt{\frac{2 \times 1.34}{710}}$	•	$\Delta x = \sqrt{\frac{2\Delta E_{el}}{k}}$	
$\frac{8C}{2 \times 1.34}$	8c	$\frac{1}{2 \times 1.34}$	
<u> </u>		· · · · · · · · · · · · · · · · · · ·	
$\Delta x = 0.0614 \mathrm{m}$		$\Delta x = 0.0614 \text{ m}$	

C3: Fluids in motion

Question	Answer
1a	Flow A: turbulent Because flow is irregular
	Flow B: streamlined
	Because flow is smooth
1b	Flow A Vortices and eddies carry and a page in resistive forces.
1c	Any two from Sund flow Viscosity of object Viscosity of fluid Temperature of fluid
1d	C. When stirring is needed
1e	The rate of flow is constant at all points along the pipes.
2a	The object in fluid B The more viscous fluid (fluid A) will exert greater resistive forces of the object Slowing the object
2b	The object would fall more quickly as a higher temperature will decrease viscosity and decrease resistive forces against the falling object.
2 c	The object would stop when it hit the fair e. The object would then sink through the muid as non-Newtonian floor as ctop e solids when large forces are exert
3a	Rate of fluid Acceases with decreased pressure.
3b	re is increases pressure of the gas. to Bernoulli's principle, this causes a reduction in the rate of f
3c	Air has to move more quickly over the top of the wing than below to maintain air flow speed around the wing. This causes a lower pressure above the wing which causes a resultant upthrust force.

INSPECTION COPY

