

Topic Tests

for BTEC National Applied Science
Principles and Applications of Science I

zigzageducation.co.uk

POD 8052

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

Contents

Thank You for Choosing ZigZag Education	ii
Teacher Feedback Opportunity	iii
Terms and Conditions of Use	iv
Teacher's Introduction	
Write-on Topic Tests	2
Unit 1 – A1: Periodicity and properties of elements	2
Unit 1 – A2: Production and uses of substances in relation to properties	7
Unit 1 – B1: Cell structure and function	12
Unit 1 – B2: Cell specialisation	16
Unit 1 – B3: Tissue specialisation	19
Unit 1 – C1: Working with waves	25
Unit 1 – C2: Waves in communication	30
Unit 1 – C3: Use of electromagnetic waves in communication	34
Non-write-on Topic Tests	37
Unit 1 – A1: Periodicity and properties of elements	37
Unit 1 – A2: Production and uses of substances in relation to properties	40
Unit 1 – B1: Cell structure and function	43
Unit 1 – B2: Cell specialisation	46
Unit 1 – B3: Tissue specialisation	48
Unit 1 – C1: Working with waves	51
Unit 1 – C2: Waves in communication	54
Unit 1 – C3: Use of electromagnetic waves in communication	56
Answers	58
A1: Periodicity and properties of elements	58
A2: Production and uses of substances in relation to properties	60
B1: Cell structure and function	61
B2: Cell specialisation	62
B3: Tissue specialisation	64
C1: Working with waves	66
C2: Waves in communication	68
C3: Use of electromagnetic waves in communication	69

Teacher's Introduction

These topic tests have been designed to help you and your students assess their knowledge of a topic after you have taught each part of Unit 1 of the BTEC National Applied Science course. This part of the course corresponds to Principles and Applications of Science I.

Each topic test closely follows the content of the specification and includes:

- Factual questions: Some simpler factual questions are included to ensure that all the content and basics are covered, and to allow weaker learners access to some marks.
- Short-answer questions: These are not in exam style, and the purpose of these is to test different elements, knowledge and skills from the specification in a variety of styles.
- Long-answer questions: Where appropriate, topics may contain one or more extended response questions, to prepare students for what they might meet in the exam, and to test exam skills.

Mathematical skills are also covered in these topic tests.

Tests have been designed to take approximately 25–35 minutes to complete.

Students are able to see the number of marks awarded for each question, allowing them to gauge the level of detail they will require for the answers. Full answers with marks are included at the back of the resource. Additionally, it makes the resource a suitable tool for students to use independently.

The topic tests are suitable for a classroom assessment, revision aid or homework task and are, therefore, suitable for use immediately after a topic is completed in class or at the end of teaching the course.

It is recommended that students have access to a calculator to complete the questions.

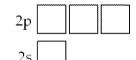
We hope you find these tests useful during your teaching.

	Topic Tests		
A1	Periodicity and properties of elements	Total = 39	
A2	Production and uses of substances in relation to properties	Total = 30	
B1	Cell structure and function	Total = 30	
В2	Cell specialisation	Total = 26	
В3	Tissue specialisation	Total = 39	
C1	Working with waves	Total = 40	
C2	Waves in Communication	Total = 27	
C3	Use of electromagnetic waves in communication	Total = 26	

November 2017

Unit 1 – A1: Periodicity and properties of elements

- Electrons in atoms fit into shells made up of orbitals.
 - How many electrons can fit in one orbital?


A	One	
В	Two	
С	Four	
[1	rh , , , , ,	

The electronic structure of a neon atom can be represented as:

2p 11	11	11
2s 11		
1s 11		

- In this way of writing electronic structures, what does each
- Write the electronical to the control of an oxygen atom in this way.

- c) Electronic configurations of atoms can be represented in different The electronic configuration of a beryllium atom can be represent
 - i) Write the electronic configuration of a nitrogen atom in this

NSPECTION

ii) In 1s², what does the 1 refer to? A Number of electrons B Number of the shell C Number of the orbital

_		
_		_
•	τ	j
	Ţ	
(1
•		
•		_
•		7
4	_	
		\ \
•	τ	
•	—	

2. Potassium chlorid and 2.35 sometimes used as an alternative to sodium Both compared as a contractive to sodium and the cont

Number of atoms

a)	De how the bonding in KCl is formed.
1- \	In VCL ions are attracted towards as in the Why are the ions in

b) In KCl, ions are attracted towards each other? Why are the ions in each other?

(discuss)	
	700

c) Draw a dot and cross diagram, using outer electrons only, to show

d) Potassium has a larger ionic radius than sodium. Explain which stronger bonding. are compounds which contain covalent bonds. 3. Ethane the formula C₂H₆. Draw ethane using a dot and cross diagram. b) Ethere contains as many carbon atoms as ethane, but has a double atoms, which is stronger. Write the formula of ethene. i) ii) Describe the bonding in ethane in terms of Carbon-carbon bond length compared to ethene Geometry around the carbon atoms The number of coordinate bonds

NSPECTION N

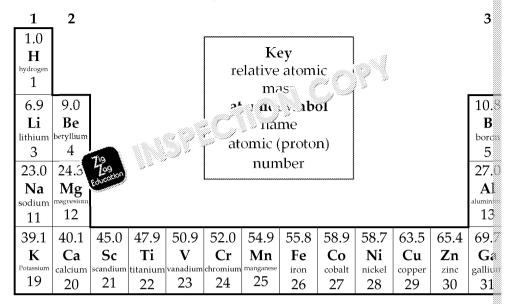
•••••		Z
		<u>S</u>
		<u> </u>
ш	He and CH, are all compounds with covalent hands	
	, Her and CH ₄ are all compounds with covalent bonds.	
a)	Predict which of these compounds have only van der Waals forces sample of the compound.	$\overline{}$
	A H ₂ O and HCl	
	B HCl and CH ₄	7
	C CH ₄ and H ₂ O	
	D H ₂ O, HCl and CH ₄	
	sample of the compound. A H ₂ O and HCl B HCl only	7
	Leaventh, HCl and CH ₄	~
c)	Predict which of these compounds have hydrogen bonding between samples of the compounds.	
	A H ₂ O only	
	B HCl only	
	C CH4 only	COPYRIC
	D H ₂ O, HCl and CH ₄	PROTECT
Alu	minium chloride, AlCl3, is an important (ac) st in reactions to ma	
AlC	ls is the only product formed a saluminium reacts with chloring	
Wri	re a balanced e and a mis reaction.	/i g

7. Chloroethane, C₂H₅Cl, is made industrially using ethene, C₂H₄, and hypfollowing reaction:

	$C_2H_4 + HCl \rightarrow C_2H_5Cl$
A s	olution is made using 0.200 mol of HCl and 75.0 cm 3 of distille
i)	Calculate the mass of HCl that contral, 22(3) mol of HCl.
	Goden Company
*	
ii)	Calculate the concentration of this solution in mol dm ⁻³ .
	ng an excess of ethene, 4.10 g of chlor was produced fr
Ass	uming that there is enough, what mass of chloroethaned from 0.200 mg/srf. ().
	123 miles
•••••	

INSPECTION COPY

COPYRIGHT PROTECTED

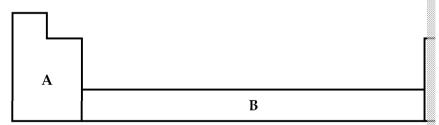


a)

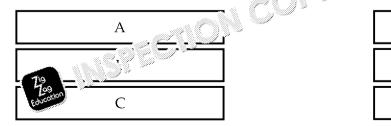
b)

Unit 1 – A2: Production and uses of substances in relationships.

1. Look at this section of the periodic table.


a) Which period is magnesium in?

A	Period 1	
В	Period 2	
С	Period 3	
D	Period 4	


b) Which group is any

c) A, B and C represent blocks in the periodic table.

Match the letters A, B and C to the correct biggs of the periodic tall

INSPECTION COPY

Elements in Period 3 are all essential to biological life. They have diff different electronegativities and first ionisation energies. Explain the trend in first ionisation energy across Period 3 of the a) Electronegativity has a similar trend for similar reasons. Define c) Which one of the following elements in Period 3 has a giant coval Mg Si Elements in Group 7 are all small covalent molecules. They have a low Explain the increase in boiling points down Group 7. COPYRIGHT **PROTECTED** b) Metal elements like aluminium have a manifest her boiling point Explain why most metals have a Fig. er Louing point than Group

Metal elements are often good conductors of electricity. Explain electricity. d) malleable, which means they are easy to bend. Explain how this diagram shows what happens to the particles in is bent. Iron and lithium both react with oxygen in ... Write a balanced equation (ft) reaction of lithium with oxyger Explain whether oxygen is oxidised or reduced. Lithium reacts with water. Write a balanced chemical equation f c)

INSPECTION COPY

Iron can react with sulfuric acid. Write a word equation for this 1 Iron is a transition of a found, and lithium is in Group 1. Predict, base t U.C. which of these metals reacts more quickly with ox f) Iron oxide can have two formulae: Fe₂O₃ and FeO. Explain why i different formulae. Look at the reactivity series Reactivity series Potassium most reactive Sodium Calcium Magnesium Aluminium Zinc Iron Tin Lead Copper Silver COPYRIGHT Gold **PROTECTED** Platinum least reactive Magnesium, aluminium and contar replaced to separate solution Explain which of the same the will displace zinc from zinc bromid

b) Chlorine water, $Cl_{2(aq)}$, and iodine solution, $I_{2(aq)}$, are added to sepaznBr_{2(aq)}.

L)	Explain which of chlorine and lodine will react with zinc bro
	••••••••••••••••••••••••••••••••••••••

ii) Write the balance and in for the reaction in i).

INSPECTION COPY

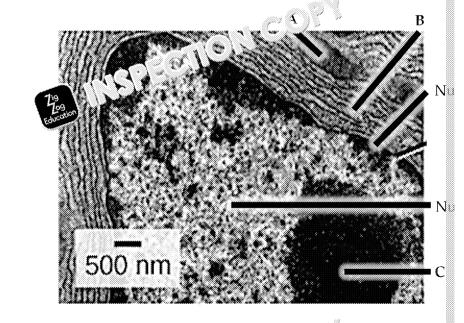
Unit 1 - B1: Cell structure and function

1. Draw lines to identify the cell type to which each of these organelles be Some organelles may be present in multiple cell types.

ON COR

Nucleoid

Golgi apparatus



Centriole

80S ribosome

Tonoplast

2. An electron micrograph of an animal cell is shown below. Identify the structures labelled A, B and C.

A :	

B:		
	79.	

C:	 •••••

INSPECTION COPY

/19
700
<u> </u>
Education
LOUCAGOII

3. A light microscope can be used to observe blood cells.

Describe a method that can be used to observe blood cells using a light

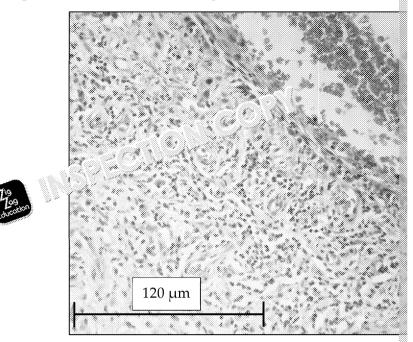
4. A drawing of a plant cell is shown below.

What is the function of the organelles labelled A, B and C?

A:

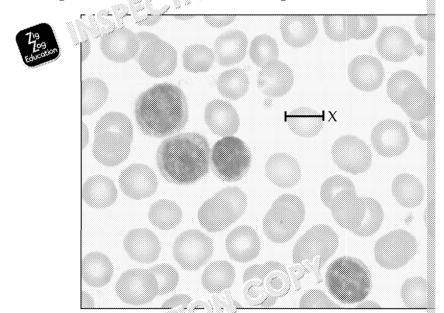
B:

NSPECION COPY



Bacterial cells can be classified as either gram negative or gram positive What part of a bacterial cell determines the result of the test? Nucleoid Plasmid Cell wall Ribosome b) his test performed? How can the result of this test be used to decide the method of tre diseases?

NSPECHON COPY

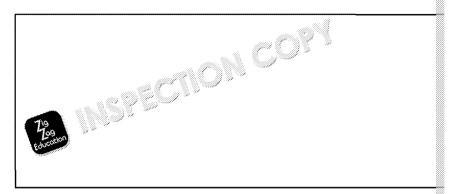


6. A microscope slide of skin cells was imaged and is shown below.

a)	Calculate the magnification of the image, using the scale bar on tl

b) The image below is of its. It is magnified at 1000 x.

Calculate the try of the cell labelled X.


79	
cd Control	
	•

INSPECTION COPY

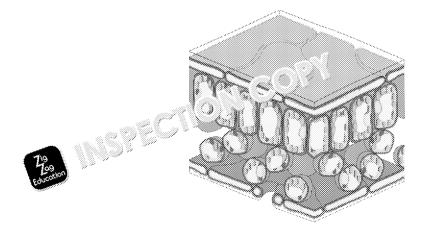
Unit 1 - B2: Cell specialisation

- 1. Root hair cells are specialised cells of the plant root.
 - a) Draw a root hair cell and label the parts of the cell in the space be

b) Connect the adaptations of root hair cells to their function in a plant

Many mitochondria
Long projection
Large vacuole

Increases


		6

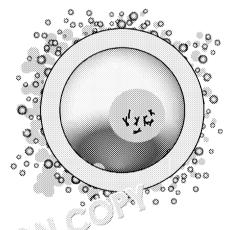
Active

2. a) Tick the name give of the pecialised cells that perform photosy

	or 37 mesophyll	
B	Palisade mesophyll	
С	Guard cell	
D	Epithelial cell	

b) Label three adaptations of this cell type on the diagram of the lea

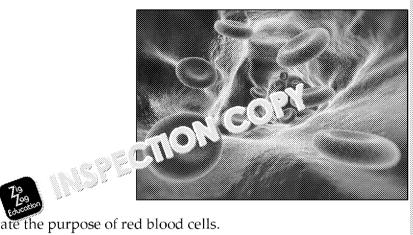
NSPECTION COPY



3. A sperm cell is shown below. This type of cell is essential to fertility a

- a) Label two adaptations present in this cell type that allow it to per-
- b) Give the name of an adaptation that is common between both sper
- c) State the importance of this adaptation during reproduction.

4. An egg


On the diagram, 's & A and one correct name:

- a) Tipolo. Las vital for recognition of sperm cells
- b) The structure that is a supply of protein to a developing embryo

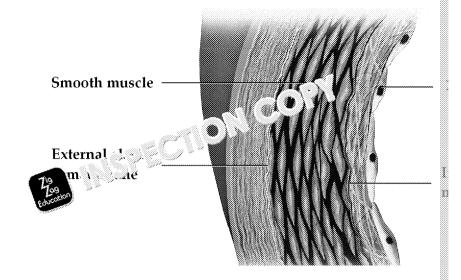
INSPECTION COPY

5. Consider the computer-generated image of red blood cells shown bel

a)	State the purpose of red blood cells.					
b)	From the image, state two adaptations of red blood cells in the blood					
c)	What percentage of blood is the list below.					
	729 % 1 threaten 20%					
	C 20–40% D >40%					
	LI LI					
d)	What are the functions of white blood cells, and how are they ada					

INSPECTION COPY

Unit 1 – B3: Tissue specialisation

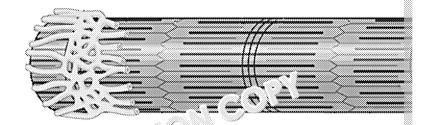

1.

Ері	thelial tissue can be found in many locations throughout the huma
a)	Name the two types of epithelial tissue present in the body.
	Education
b)	Identify the type of epithelium represented in the image below.
	0 00 000
On	e location of epithelial that is the alveolar epithelium of the lungs
c)	W 19 it want that the lung epithelium is made of a thin lay
	ronic obstructive pulmonary disease (COPD) is a disease seen regue disease causes the epithelium to become inflamed and to thicken.
d)	Suggest have COPD can be detrimental to a subange
u)	Suggest how COPD can be detrimental to a sechange.

INSPECTION COPY

The tissue layers of a medium-sized artery are shown below.

a)	What name is given to the tissue type indicated by X?
Daı	mage to this layer can cause significant cardiovascular problems.
b)	Name two risk factors that make damage to the layer more likely
	72


Atherosclerosis is a disease in which this layer becomes thickened and Suggest why atherosclerosis can lead to severe cardiac problems.

NSPECTION COPY

3.	The figure below	shows a	a sinole m	nuscle fibre
٥.	The figure below	SHOWS	a Sirigie ii	iuscie nore.

a) What we to a are responsible for the typical banding pattern m. The same responsibl

A	Myosin
В	Elastin
С	Titin
D	Actin

b)	What name is given to the mesh that wraps around a muscle fibre

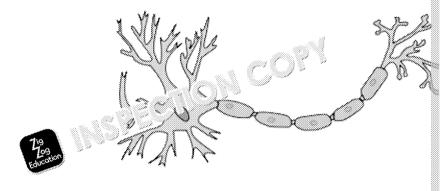
Muscle action is thought to occur as a result of the sliding filamen

c)

Give an outline of the sliding filament theory, stating how it bring

contraction.	
	••
	•
	•

NSPECTION COPY



Two types of muscle fibres exist; fast- and slow-twitch. d) Explain why fast-twitch muscles are paler than slow-twitch muscles.

e) T. To ici wo of these sports are likely to benefit most from fast

A	Archery
B Sprinting	
С	Weightlifting
D	Marathon running

4. A myelinated motor neurone is shown below.

a) Give **one** function of the myelin sheath.

INSPECTION COPY

c) Label this trace with the key words shown below.

There is an overshoot, called before the original

Action potential, Refractory period

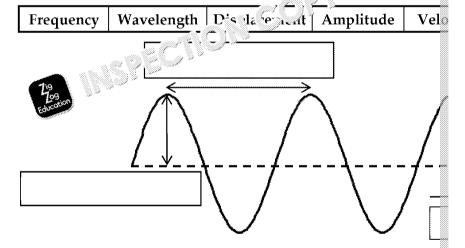
d)	How does the myelin sheath affect the transmission of an action J

INSPECTION COPY

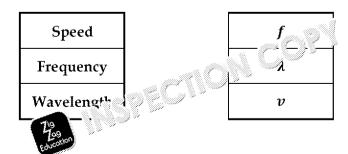
Neurones do not make direct contact with each other. Synapses are paneurones.

What is the role of acetylcholine at a synapse? e) is a neurotransmitter. It is produced in the brain at a region What disease can result from the loss of dopamine-producing new What treatment is often offered to patients suffering from this dis Serotonin is a different type of neurotran and teal Its shortage is associated associated as the shortage is as the short as the sh Suggest how a shortage of the Lam can lead to depression.

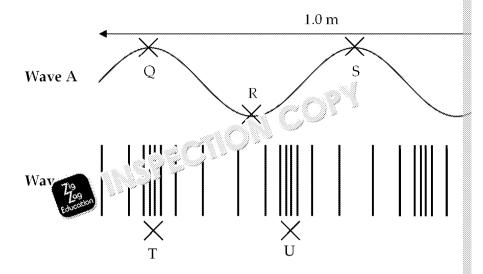
NSPECTION COPY


Unit 1 - C1: Working with waves

- There are many examples of waves in nature, such as sound waves or water.
 - Complete the sentences below using the following words. Some at all.


amplitude	period', \	rate	S)
frequency	4 Stance	phase	disp

b) Fill in the boxes with the words provided to label the wave below


c) Match the quantities below to their symbol and unit.

2. The diagrams below show two waves, A and B, with several points m

a)	Which of the waves is a transverse wave and which is a longitudi
	answer.

200000000000000000000000000000000000000
200000000000000000000000000000000000000

b)	Gi example of a transverse wave and one example of a le	ong

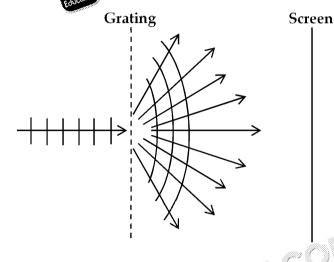
c)	Wave A is travelling at a speed of 30 m s ⁻¹ .	Using an equation from	×
	calculate the frequency of wave A.		

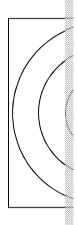
	200000000000000000000000000000000000000
	Section of the sectio
	000000000000000000000000000000000000000
209 Baration	100000000000000000000000000000000000000

INSPECTION COPY

State the phase difference between the points: Q and R i) ii) Q and S iii) T and U When two coherent waves meet they can interfere. What is meant by the term *coherent*? a) what happens during constructive and destructive inter Select the option that describes the phase difference required for **a** Multiple of 45° Multiple of 90° Multiple 🏤

INSPECTION COPY




d) Select the option that describes the path difference required for constant $n = 0, 1, 2 \dots$

A	nλ
В	$\frac{n}{2}\lambda$
С	$\frac{n+1}{2}\lambda$
D	$(n+1)\lambda$

		P
	- %	<u> </u>

4. The direction by the shows a process used in industry, including the po

a) Name the process shown ab

Min.
1,5
ina
102
A (100)
FOUCOO
100000000000000000000000000000000000000

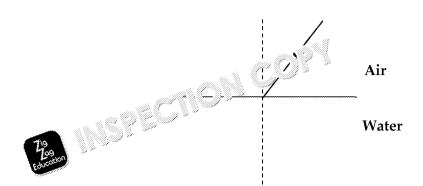
b) Mark the brightest spot on the pattern produced on the screen will

•••••	• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

c) How can the process above be used in industry to identify gases?

	.08	
	100 C 100 C 100 C	
 ············	··· <i>J</i> ······	

	00000000
7 23	
Edication	700000000000000000000000000000000000000
	78


Draw the 3rd harmonic of a stationary wave. Label any nodes and Describe how to all youry wave is formed. How does a trumpet use stationary waves to create sounds? d) A transverse was along a string. ion on the string is 15 N and a 2.0 metre length of the stri Using an equation from the formulae sheet, calculate the velocity string.

INSPECTION COPY

Unit 1 – C2: Waves in communication

1. The diagram below shows the path of light as it passes from air to walk

a) Select the name given to the dotted line.

A	Incident
В	Parallel
С	Normal
D	Perpendicular

- **b)** Complete the diagram above to show the path. I light from air to
- c) The refractive index of a type starts 1.2.

Using an equation of light in a vacuum = 3.0×10^8 m s⁻¹

•	•			

d) Light enters a block of glass from air at 12 $^{\circ}$ to the normal to the s index of the glass is 1.4. Using an equation from the formulae sheet, calculate the angle the makes to the normal to the surface. Fibre optic cables have many applications in computing and medical Complete the diagram below to show the path a ray of light takes active index of the core is 1.57. Using an equation from the formulae sheet, calculate the critical a between the core and air. COPYRIGHT **PROTECTED**

c) Using the words below, fill in the gaps to describe the relative refulading and core of an optical fibre.

higher	lower	equal	refraction
transmission	diffraction	interface	membrane

	<u> </u>	
	It is important that the core has	refrac
	it is important that the core not	retrac
	because light and the sergo	a+ +l. a
	because light of a significant go	at the
	70	
	be educated a material with a	retractive ind ϵ
	currently in.	
d)	Describe how fibre entire are used in medical imagin	20
u)	Describe how fibre optics are used in medical imagir	ıg.
	•••••	• • • • • • • • • • • • • • • • • • • •
	······································	
		• • • • • • • • • • • • • • • • • • • •
Fib	re optics are frequently use he manications.	
110	re opiics are frequently in a lity maintradions.	
- \	TATE OF THE STATE	1 1' '(1 -' -
a)	What are the the references between analogue and	i digital sign
	703 mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/m	
	Edit.	
	••••••	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••	• • • • • • • • • • • • • • • • • • • •
b)	What are the advantages of digital signals over analogous	oguo cionale
D)	What are the advantages of digital signals of a maid	igue signais
		• • • • • • • • • • • • • • • • • • • •

3.

INSPECTION COPY

a)	Order the steps	holow to	doccribo bow	an analo	onio cional	ic cons
C)	Order the steps	below to	describe now	an anaic	ogue signai	IS COITY

A	Select an appropriate sampling rate, which sets how frequen
В	Transmit the data through an aerial or optical fibre.
С	Sample the analogue signal using an analogue-to-digital cor
D	The cable must be screened by arting to avoid electrical in
Е	Connect the common full formation and an analogue-to-digital common full full formation and an analogue-to-digital common full full full full full full full ful
E	le : > Avallest appropriate unit for converting the voltag
GE	a transducer to produce an analogue electrical signal provou want to send

d) Select the main advantage of using a multimode fibre optic over

A	Uses less power	ſ
В	Can send multiple sets of data along a single fibre	
С	Cheaper	
D	Can send data at a higher frequency	

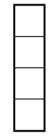
INSPECTION COPY

Unit 1 – C3: Use of electromagnetic waves in commun

1. a) Use the words below to fill in the gaps to describe the speed of el

some	most	all	с	l
water	fastest	slowest	, th	withou

.....electron waves travel at the speed of light



.....speed that anything can travel at, and

mass can travel at this speed.

b) Select the value of the speed of light.

Α	$3.00 \times 10^8 \mathrm{m\ s^{-1}}$
В	340 m s ⁻¹
С	$2.64 \times 10^5 \text{ m s}^{-1}$
D	$7.19 \times 10^{10} \text{ m s}^{-1}$

2. a) $I = \frac{k}{r^2}$ is an important equation for the residue of a wave.

State the name gives of the squation.

b) At a distance of 0.5 m from a bulb, the intensity of light from the local Calculate the intensity of light from the bulb at a distance of 4.0 m

....#

3. Electromagnetic waves are grouped into regions based on their frequency

a) Fill in the table below to describe the regions of electromagnetic *w* applications.

Region	Frequency	A
Radio	30 kHz to 3 CV22	
Microwave	2 CHz to 300 GHz	
79. Edwards	300 GHz to 400 THz	Cooking food, night
	400 THz to 800 THz	Human sight, phot
	800 THz to 30 PHz	Forensic analysis, d
X-rays	30 PHz to 30 EHz	
Gamma rays	> 30 EHz	

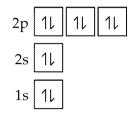
b)	Why are higher frequency microway star an satellite communic
	frequency radio waves are the movile phone communication?
c)	Bluetooth and Wi-Fi both use similar frequencies. How are Bluet interfere with Wi-Fi signals?
	19

INSPECTION COPY

Why are infrared waves chosen for their use in remote controls? What makes Lize a guency electromagnetic waves, such as X-ray bl، عمد in communication?

NSPECTION COPY

COPYRIGHT PROTECTED


79 1.1.3.7. E.C. 1.1.0.1. C.G. 1.1.

Unit 1 – A1: Periodicity and properties of elements

- 1. Electrons in atoms fit into shells made up of orbitals.
 - a) How many electrons can fit in one orbital?

A	One
В	Two
С	Four
D	Fight

b) The electronic structure of a neon atom can be represented as:

- i) In this way of writing electronic structures, what does each
- ii) Write the electronic structure of an oxygen atom in this way.
- c) Electronic configurations of atoms can be received in different.

 The electronic configuration of the representation can be represented in the electronic configuration of the representation of th
 - i) Write the electric prininguration of a nitrogen atom in this viii 19 \$2 mar does the 1 refer to?

- COO.	
A	Number of electrons
В	Number of the shell
С	Number of the orbital
D	Number of atoms

- **2.** Potassium chloride, KCl, is sometimes used as an alternative to sodium Both of these compounds are ionic.
 - a) Describe how the bonding in KCl is formed.
 - b) In KCl, ions are attracted towards ea not have Why are the ions in each other?
 - c) Draw do so oss diagram, using outer electrons only, to show
 - d) Powerum has a larger ionic radius than sodium. Explain which stronger bonding.

INSPECTION COPY

- **3.** Ethane and ethene are compounds which contain covalent bonds. Ethane has the formula C₂H₆.
 - a) Draw ethane using a dot and cross diagram.
 - b) Ethene contains as many carbon atoms as ether, but has a double atoms, which is stronger.
 - i) Write the formula of 🧢 🤄
 - ii) Describe and aim in ethane in terms of Compared to ethene Geometry around the carbon atoms
 - The number of coordinate bonds
- 4. Aluminium is a metal used in lightweight materials. Describe the bor
- **5.** H₂O, HCl and CH₄ are all compounds with covalent bonds.
 - a) Predict which of these compounds have only van der Waals forces samples of the compound.

A	H ₂ O and HCl	
В	HCl and CH4	
С	CH ₄ and H ₂ O	
D	H ₂ O, HCl and CH ₄	

b) Predict which of the compounds have dipole-dipole forces between samples of the impound.

_=	
Ago	and HCl
В	HCl only
С	CH4 and H2O
D	H ₂ O, HCl and CH ₄

c) Predict which of these compounds have hydrogen bonding between samples of the compound.

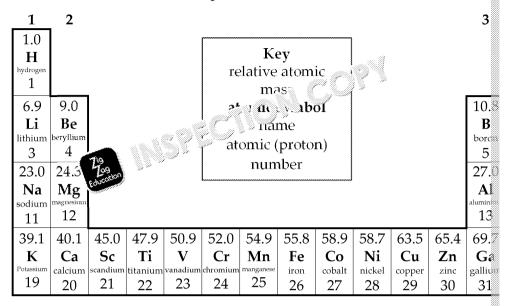
A	H ₂ O only	
В	HCl only	
C	CH ₄ only	
D	H ₂ O, HCl and Class	

Alum Charide, AlCl₃, is an important catalyst in reactions to mal AlCl₃ is the only product formed when aluminium reacts with chloring Write a balanced equation for this reaction.

7. Chloroethane, C₂H₅Cl, is made industrially using ethene, C₂H₄, and hy following reaction:

 $C_2H_4 + HCl \rightarrow C_2H_5Cl$

- a) A solution is made using 0.200 mol of HCl and 75.0 cm³ of distilled
 - i) Calculate the mass in g of HCl that control 0.200 mol of HC
 - ii) Calculate the concentration. his solution in mol dm⁻³.
- A. Using an 2 Septemene, 4.10 g of chloroethane was produced from 4.10 g of chloroethane was produced from 9.200 mol of HCl?



INSPECTION COPY

Unit 1 – A2: Production and uses of substances in rela

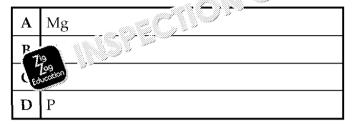

1. Look at this section of the periodic table.

a) Which period is magnesium in?

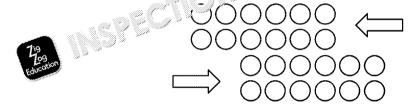
A	Period 1
В	Period 2
С	Period 3
D	Period 4

- **b)** Which group is a
- c) A Cepresent blocks in the periodic table.

Match the letters A, B and C to the correct block of the periodic ta


А	
В	
C C C	

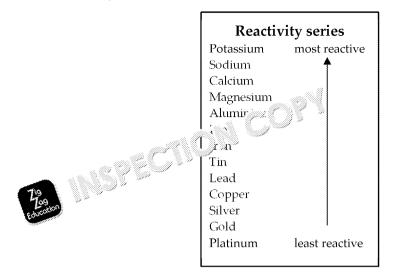
INSPECTION COPY



2. Elements in Period 3 are all essential to biological life. They have different electronegativities and first ionisation energies.

- a) Explain the trend in first ionisation energy across period 3 of the
- **b)** Electronegativity has a similar trend for similar reasons. Define ©
- c) Which one of the following elements in and 3 has a giant coval-

- 3. Elements in Group 7 are all small covalent molecules. They have a low
 - a) Explain the increase in boiling points down Group 7.
 - b) Metal elements like aluminium have a much higher boiling point Explain why most metals have a higher boiling point than Group
 - c) Metal elements are often good conductors of electricity. Explain electricity.
 - d) Metals are also malleable, which me as ware easy to bend


Explain how this diagram shows what happens to the particles in is bent.

- 4. Iron and lithium both react with oxygen in air.
 - a) Write a balanced equation for the reaction of lithium with oxyger
 - b) Explain whether oxygen is oxidised or reduced.
 - c) Lithium reacts with water. Write a barray a chemical equation for
 - d) Iron can react with furn acid. Write a word equation for this re
 - e) In transition metal, and lithium is in Group 1. Predict, bases per table, which of these metals reacts more quickly with oxy
 - f) Iron oxide can have two formulae: Fe₂O₃ and FeO. Explain why is different formulae.

INSPECTION COPY

5. Look at the reactivity series.

- a) Magnesium, aluminium and copper are added to separate solution Explain which of these metals will displace zinc from zinc bromion
- **b)** Chlorine water, $Cl_{2(aq)}$, and iodine solution, $I_{2(aq)}$, are added to sepa $ZnBr_{2(aq)}$.
 - i) Explain which of chlorine and iodine will react with zinc bro
 - ii) Write the balanced equation for the reasson in i).

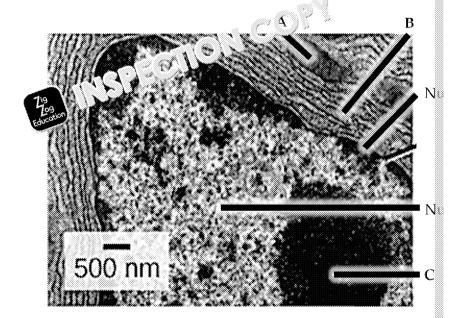
INSPECTION COPY

Unit 1 - B1: Cell structure and function

Copy the boxes below and draw lines to identify the cell type to which exercises
 Some organelles may be present in multiple cell types.

Nucleoid

Golgi apparatus



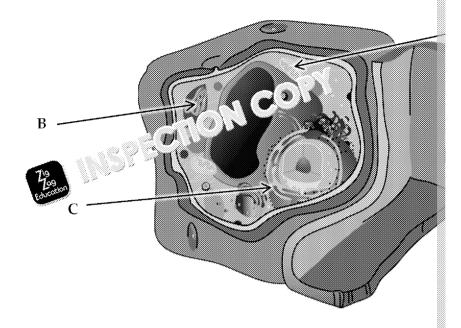
Centriole

80S ribosome

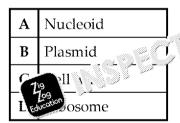
Tonoplast

2. An electron micrograph of an animal cell is shown below. Identify the structures labelled A, B and C.

3. A light microscope can be used to observe blanders.


Describe a method that can be used belood cells using a light

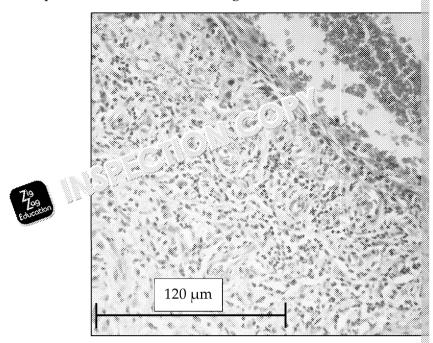
INSPECTION COPY

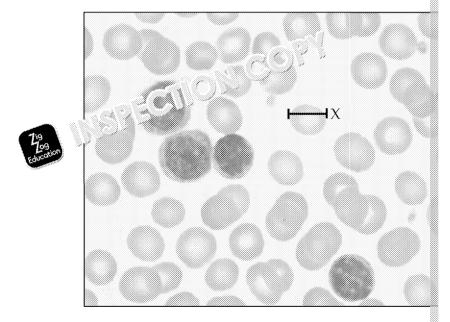


4. A drawing of a plant cell is shown below.

What is the function of the organelles labelled A, B and C?

- 5. Bacterial cells can be classified as either gram negative or gram positive
 - a) What part of a bacterial cell determines the result of the test?


- **b)** How is this test performed?
- c) How can the result of this test be used to decide the method of treat diseases?


INSPECTION COPY

6. A microscope slide of skin cells was imaged and is shown below.

- a) Calculate the magnification of the image, using the scale bar on the
- b) The image below is of blood cells. It is magnified at 1000 x.

Calculate the true size of the cell labelled X.

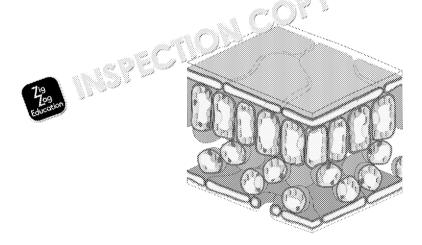
INSPECTION COPY

Unit 1 - B2: Cell specialisation

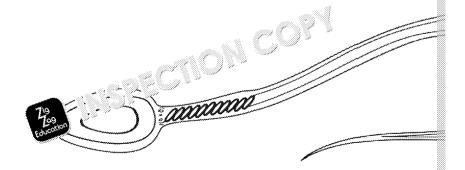
- 1. Root hair cells are specialised cells of the plant root.
 - a) Draw a root hair cell and label the parts of the cell.
 - **b)** Match the adaptations of root hair cells to the unction in a plan

Many mitochondric

Increases



Active

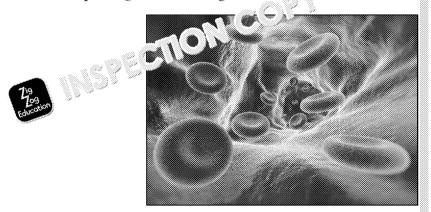

2. a) What is the name given to the specialised cells that perform photon

A	Spongy mesophyll
В	Palisade mesophyll
C	Guard cell
D	Epithelial cell

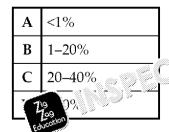
b) Give three adaptations of this cell type as seen on the diagram of

3. A sperm cell is shown below. This type of cell is essential to fertility a

a) Sketch the sperm cell and label **two** adaptations present in this cell perform its function.


b) Give the name of an adaptation that is common between both spe

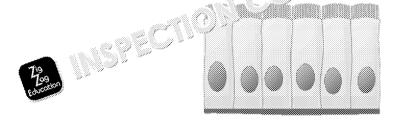
- c) State the importance of this adaptation during reproduction.
- 4. An egg cell is shown below.


Copy the diagram and label it with the correct name of:

- a) The region that is vital for recognition of sperm cells
- b) The structure that is a supply of protein to a developing embryo
- 5. Consider the computer-generated image of red blood cells shown below

- a) State the purpose of red blood cells.
- b) From the image, state two adaptations of red blood cells in the blood

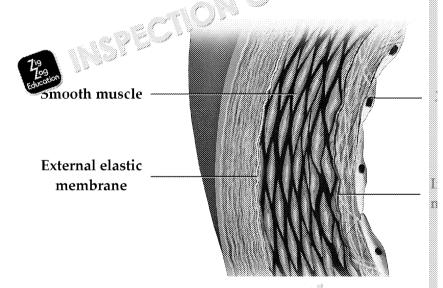
c) What percentage of blood is occupied by white blood cells?


d) What are the functions of white blood cells, and how are they ada

INSPECTION COPY

Unit 1 - B3: Tissue specialisation

- 1. Epithelial tissue can be found in many locations throughout the huma
 - a) Name the two types of epithelial tissue present in the body.
 - **b)** Identify the type of epithelium represented in the image below.



One location of epithelial tissue is the alveolar epithelium of the lungs

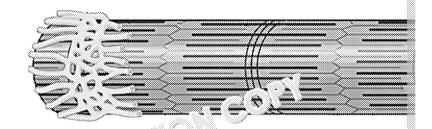
- c) Why is it important that the lung epithelium is made of a thin lay.

 Chronic obstructive pulmonary disease (COPD) is a disease seen regular.

 The disease causes the epithelium to become inflamed and to thicken.
- d) Suggest how COPD can be detrimental to gas exchange.
- 2. The tissue layers of a medium-sized arter as shown below.

a) What name is given to the tissue type is accepted by X?

Damage to this layer can cause to the caus


b) Note that we damage to this layer more likely. Atherosclerosis is a disease in which this layer becomes thickened and

c) Suggest why atherosclerosis can lead to severe cardiac problems.

INSPECTION COPY

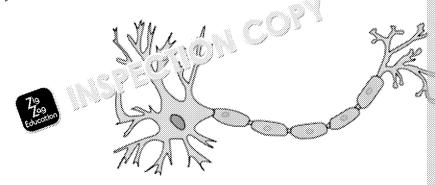
3. The figure below shows a single muscle fibre.

a) Where we are responsible for the typical banding pattern in Table 1997.

Α	Myosin
В	Elastin
С	Titin
D	Actin

b) What name is given to the mesh that wraps around a muscle fibre

Muscle contraction is thought to occur as a result of the sliding filament


c) Give an outline of the sliding filament theorems ating how it bring contraction.

Two types of muscle file ey to tast- and slow-twitch.

- d) E. 19 way fast-twitch muscles are paler than slow-twitch muscles
- e) Choose which **two** of these sports below are likely to benefit from

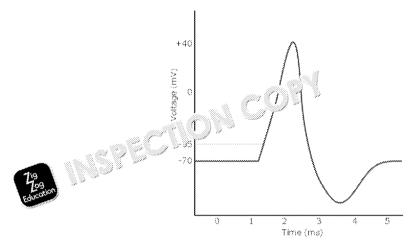
Α	Archery
В	Sprinting
С	Weightlifting
D	Marathon running

4. A myelinated motor neuron is shown below.

a) Give **one** function of the myelin sheath.

INSPECTION COPY

Upon activation, sodium channels open and cause Mations to diffuse


The polarity of the cell gradually changes, and a greater change in

positive feedback loop

A period of a neuron of the inside.

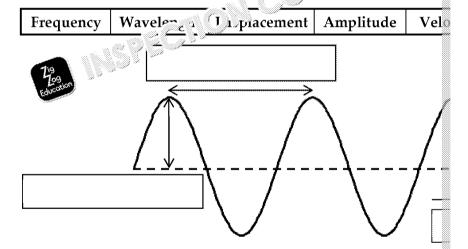
At peak, the sodium channels and K^+ channels open K^+ ions diffuse and cause a return of the polarity. There is an overshoot, called before the original ρ

c) Copy this trace and label with the key words shown below.

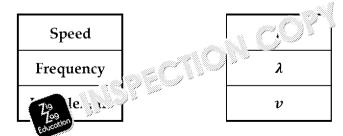
Action potential, Refractory period

- d) How does the myelin sheath affect the transmission of an action particles. Neurons do not make direct contact with each other. Synapses are presentations.
- e) What is the role of acetylcholine at a synapse?
- 5. Dopamine is a neurotransmitter. It is preduced in the brain at a region
 - a) What disease can result to so of dopamine-producing neurons.
 - b) W the earth of the offered to patients suffering from this discontinuous additional state of the suffering from this discontinuous additional state of the suffering from this discontinuous suffering from the suf
 - c) Suggest how a shortage of serotonin can lead to depression.

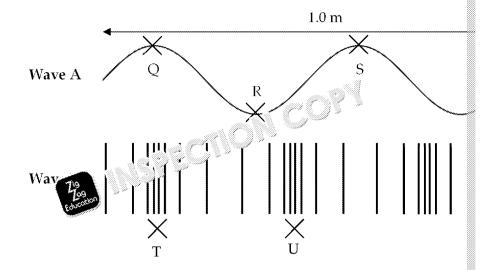
INSPECTION COPY


Unit 1 - C1: Working with waves

- There are many examples of waves in nature, such as sound waves or water.
 - a) Copy and complete the sentences below using the following word used at all.


amplitude	period', \	rate	dien
frequency	5 s.ance	phase	disp

b) Copy the diagram below and fill in the boxes with the words prowave below.

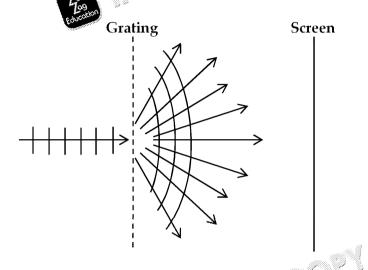

c) Match the quantities below to their symbol and unit.

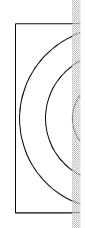
INSPECTION COPY

2. The diagrams below show two waves, A and B, with several points m

- a) Which of the waves is a transverse wave and which is a longitudinal answer.
- b) Give one example of a transverse wave and one example of a long
- c) Wave A is travelling at a speed of 30 m s⁻¹. Using an equation from calculate the frequency of wave A.
- d) State the phase difference between the party
 - i) Q and R
 - ii) Q and S
 - ii 79 d
- 3. When two coherent waves meet they can interfere.
 - **a)** What is meant by the term *coherent*?
 - b) Describe what happens during constructive and destructive inter
 - c) Select the option that describes the phase difference required for

A	Multiple of 45°
В	Multiple of 90°
С	Multiple of 180°
D	Multiple of 360°
7. N.S. 6.5 s	


INSPECTION COPY



d) Select the option that describes the path difference required for $constant n = 0, 1, 2 \dots$

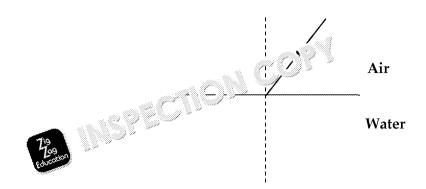
Α	$n\lambda$	
В	$\frac{n}{2}\lambda$	
С	$\frac{n+1}{2}\lambda$	
D	$(n+1)\lambda$	

4. The diggram is hows a process used in industry, including the particle.

- a) Name the process shown above
- b) Copy the pattern product are the brightest spot on the pattern product are the brightest spot on the pattern product.
- c) How can the process above be used in industry to identify gases?
- **5.** a) Draw the 3rd harmonic of a stationary wave. Label any nodes and
 - **b)** Describe how a stationary wave is formed.
 - c) How does a trumpet use stationary waves to create sounds?
 - d) A transverse wave moves along a string.

The tension on the string is 15 N and a 2.0 metric length of the string mass of 15 g.

Using an equation from the or place sheet, calculate the velocity string.

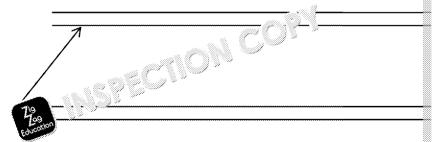


INSPECTION COPY

Unit 1 – C2: Waves in communication

1. The diagram below shows the path of light as it passes from air to wa

a) Select the name given to the dotted line.


A	Incident
В	Parallel
С	Normal
D	Perpendicular

- b) Copy and complete the diagram above to show the path of light f
- C) The refractive index of a type of plas at 1 2.

 Using an equation from a ϵ and an exact the speed of Use the s_1 and ϵ are ϵ are ϵ and ϵ are ϵ are ϵ and ϵ are ϵ and ϵ are ϵ and ϵ are ϵ and ϵ are ϵ are ϵ and ϵ are ϵ are ϵ are ϵ and ϵ are ϵ are ϵ and ϵ are ϵ and ϵ are ϵ are ϵ and ϵ are ϵ and ϵ are ϵ and ϵ are ϵ and ϵ are ϵ are ϵ are ϵ and ϵ are ϵ and ϵ are ϵ and ϵ are ϵ are ϵ are ϵ and ϵ are ϵ are ϵ and ϵ are ϵ are ϵ and ϵ are ϵ and ϵ are ϵ and ϵ are ϵ are ϵ and ϵ are ϵ and ϵ are ϵ and ϵ are ϵ and ϵ are ϵ are ϵ and ϵ are ϵ and ϵ are ϵ and ϵ are ϵ and ϵ are ϵ are ϵ are ϵ and
- d) Lighters a block of glass from air at 12 ° to the normal to the suindex of the glass is 1.4.

Using an equation from the formulae sheet, calculate the angle the makes to the normal to the surface.

- 2. Fibre optic cables have many applications in computing and medical
 - a) Copy and complete the diagram below to show the path a ray of optic cable.

b) The refractive index of the core is 1.57.

Using an equation from the formulae sheet, calculate the critical as between the core and air.

INSPECTION COPY

Using the words below, copy the paragraph and fill in the gaps to refractive indices in the cladding and core of an optical fibre.

higher	lower	equal	refraction
transmission	diffraction	interface	membrane

It is important that the core has

because light and at the

a material with a refractive inde

currently in.

- Describe how fibre optics are used in medical imaging.
- Fibre optics are frequently used in communications. 3.
 - a) What are the main differences between analogue and digital sign
 - b) What are the advantages of digital signals over analogue signals
 - c) Order the steps below to describe how an analygue signal is conve
 - Select an appropriate same is g a c, which sets how frequent
 - Transmit the is a fth sagn an aerial or optical fibre.
 - m 😘 🔭 analogue signal using an analogue-to-digital com to avoid electrical in the capture by earthing to avoid electrical in the capture.
 - Connect the output to the input of an analogue-to-digital co
 - Select the smallest appropriate unit for converting the volta
 - Use a transducer to produce an analogue electrical signal pr want to send.
 - Select the main advantage of using a multimode fibre optic over

A	Uses less power
В	Can send multiple sets of data along a single fibre
С	Cheaper
D	Can send data at a sign arequency

NSPECTION COP

Unit 1 – C3: Use of electromagnetic waves in commun

 a) Copy the paragraph below and use the words to fill in the gaps to electromagnetic waves.

some	most	all		<i>l</i> withou
water	fastest	slowe .	with	withou

.....ghetic waves travel at the speed of light

This is the speed that anything can travel at, and

mass can travel at this speed.

b) Select the value of the speed of light.

Α	$3.00 \times 10^8 \mathrm{m\ s^{-1}}$
В	$340~{ m m}~{ m s}^{-1}$
С	$2.64 \times 10^5 \text{ m s}^{-1}$
D	$7.19 \times 10^{10} \text{ m s}^{-1}$

2. a) $I = \frac{k}{r^2}$ is an important equation for the fig. asity of a wave.

State the name 3 2 of anis equation.

- b) A famous of 0.5 m from a bulb, the intensity of light from the bulb at a distance of 4.0 m
- 3. Electromagnetic waves are grouped into regions based on their frequence
 - **a)** Copy and complete the table below to describe the regions of electropications.

Region	Frequency	A
Radio	30 kHz to 3 GHz	
Microwave	3 GHz to 300 GH-	
	300 (H) U400 THz	Cooking food, night controls, motion ser
	400 THz to 800 THz	Human sight, phot
Education Education	800 THz to 30 PHz	Forensic analysis, d
X-rays	30 PHz to 30 EHz	
Gamma rays	> 30 EHz	

INSPECTION COPY

b) Why are higher frequency microwaves used in satellite communifrequency radio waves are used in mobile phone communication?

- c) Bluetooth and Wi-Fi both use similar frequencies. How are Bluet interfere with Wi-Fi signals?
- d) Why are infrared waves chosen for their as in Lemote controls?
- e) What makes high frecal scromagnetic waves, such as X-ray unsuitable for a farmunication?

INSPECTION COPY

Answers

A1: Periodicity and properties of elements

Question	Answer
1a	B two
1bi	An orbital
1bii e	2p 1l 1 1 2 2 1s 1s 1l Correct number of electrons in each subshell, i.e. 1s² 2s² 2p⁴ 2p subshell has three up-spin and one down-spin electron Down-spin electron in first box
1ci	1s ² 2s ² 2p ³
1cii	B Number of the shell
2a	Electron(s) is (are) <u>transferred</u> from potassium to chlorine forming ions/K ⁺ and Cl ⁻ .
2b	Opposite charge Electrostatic attraction
2c	no inner electrons/allow K with a full shell of electrons) with seven × and one • (or vice-versa) Correct charges.
2d	NaCl Sodium ions have a higher charge density than potassium ions Therefore stronger electrostatic attraction
За	Correct arrangement of atoms Correct number of electro Each bond contain of atoms Ad one ×
3bi	C ₂ H ₄
3bii	ene has a shorter bond Geometry Geometry is tetrahedral Coordinate bonds Ethane has no coordinate bonds

INSPECTION COPY

Question	Answer
4	Metallic bonding Positive ions
	(Sea of) delocalised electrons
5a	D H ₂ O, HCl and CH ₄
5b	A H ₂ O and HCl
5c	A H ₂ O only
6	2Al+3Cl ₂ → 2AlCl ₃ Correct species Correct includes a control of the control
7ai	ative formula mass of HCl = 36.5 0.5×0.2 = 7.30 g
7aii	Division of 0.2 by volume (in cm ³ or dm ³) = 2.67 (do not allow 0.00267) mol dm ⁻³
7b	Amount of $C_2H_5Cl = 0.2$ mol Relative molecular mass of $C_2H_5Cl = 64.5$ Theoretical mass of $C_2H_5Cl = 64.5 \times 0.2 = 12.9$ g

INSPECTION COPY

A2: Production and uses of substances in relation to properties

Question	Answer
1a	C Period 3
1b	6
1c	A s-block
	One correct Three correct
2a	Increases Any two from: Screening/shielding stays the same Atomic radius decreases Nuclear charge increases
2b	The ability of an atom to attract a pair of electrons
2c	B Si
За	(Increases) Larger molecules Stronger van der Waals forces
3b	Metallic bonding is stronger then in waals / intermolecular f Requires more energy in ghour mperature to break forces in meta-
3c	Delocalised in the same of the
3d	ers of positive ions/atoms slide over each other
4a	$4\text{Li} + O_2 \rightarrow 2\text{Li}_2\text{O}$ Species Balancing
4b	Reduced because it goes from oxidation state 0 to -2
4c	2Li + 2H ₂ O → 2LiOH + H ₂ Species Balancing
4d	iron + sulfuric acid → iron sulfate + hydrogen Iron sulfate Hydrogen
4e	Group 1 metals are more reactive Lithium reacts more quickly
4f	It can have multiple contact the fection of the fec
5a	Magnesium hadrium Tey reactive than zinc
5bi	orine because it is more reactive than bromine
5bii	$ZnBr_2 + Cl_2 \rightarrow ZnCl_2 + Br_2$

INSPECTION COPY

B1: Cell structure and function

Question	Answer			
	Nucleoid			
1	Golgi apparatus			
	70S ribosc me Eukar			
· ·	80S ribosome			
	Tonoplast			
2	A: Mitochondrion (ALLOW mitochondria) B: Endoplasmic reticulum (ALLOW rough OR smooth) C: Nucleolus			
3	 Any four (in logical order) from: Produce a (smear) of blood on a slide Place cover slip above slide Place slide on stage Select a low magnification lens Illuminate the slide Adjust coarse focy and by a sells into view Adjust fing a list chacrease resolution of slide 			
4	A in a granication as necessary See of respiration AND produces energy for cell B: Site of photosynthesis AND produces glucose for respiration from CO2 and water (and su C: Site of protein synthesis AND receives template from nucleus and creates the polypeptide face			
5a	C Cell wall			
5b	Heat fixation of sample to slide Apply stain (crystal violet) Apply iodine solution Decolorise using ethanol/acetone Counterstain with safranin			
5 c	Gram positive are more responsive to gram size to antibiotics and another be needed.			
6a	Bar measure $\frac{1}{2} = \frac{1}{2} (100 \mu \text{m})$ lag $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} (100 \mu \text{m})$ gr. Arcation = $\frac{1}{2} = \frac{1}{2} (100 \mu \text{m})$			
6b	Cell measures 1 cm = 10 000 μm Object size = Image size / magnification Object size = 10 000 / 1000 = 10 μm			

INSPECTION COPY

B2: Cell specialisation

Question	Answer			
1a	Cell membrane		Vacuole Project	
,	Many mitochondria		Increases surface area : v	
1b	Long projection		Can fill with water	
	Large vacuole		Active transport of ions	
2a	B Palisade mesophyll	B Palisade mesophyll		
2b	 Tightly packed Columnar shape Orientated to leaf surface High number of chloroplasts Short distance from outside / s' on di usion distance Close to spongy mescale close to stomata 			
3a	Flagellum/undulip Acrosome Lots of mitochondria			
3b	Haploid nucleus (allow ha	lf the number	of chromosomes)	
3c	Required to allow genetic mixing Fertilised egg cell will then have the full number of chromosomes			
4a	Recognition (Zona pellucida			

INSPECTION COPY

Question	Answer		
4b	Protein sup (Corona radio		
5a	Transport oxygen around the body		
5b	Two from: Large number to facilitate oxygen transport Biconcave shape to increase surface area: volume ratio No nucleus to maximise space for haemoglobin Flexible to fit through tiny vessels		
5c	A <1%		
5d	 Indicative content They defend the body against pathogens They produce antibodies They produce antitoxins They perform phagocytosis They synthesise proteins They have many recent of their cell surface They can charge to grape of the cell membrane They is a produce enzymes to digest pathogens 		

INSPECTION COPY

B3: Tissue specialisation

Question	Answer
1a	Squamous
	Columnar
1b	(Ciliated) columnar
1c	Short diffusion distance to maximise gas exchange
1d	Reduces ability to grading asses quickly
2a	Endothe: 100
2b	Diabetes High blood pressure Aging High cholesterol Obesity Smoking
2c	Reduces the amount of blood flow to vital organs and can lead to stroke / heart failure
3a	Actin Myosin
3b	Sarcoplasmic reticulum Stores calcium for rapid induction of an impulse
3с	Action potential travels into the muscle fibral Calcium released from the sarcopla in ulum Calcium binds with troporios binding sites on actin Myosin heads bind actin fibre in which will be actin fibre in the sation of the sation file of the
3d	twitch muscles respire anaerobically Do not require extensive blood supply (or the opposite)
3e	Sprinting Weightlifting
4a	One from: Protects the axon Speeds impulses
4b	positive into negative close out hyperpolarisation
	close out hyperpolarisation

INSPECTION COPY

Question Answer Action potential Voltage (mV) 4c Refractory per Time (ms) Two from: Does not allow exchange of ions across myelin sheath 4d Causes jumping of action potential across nodes of Ranvier, sp Saltatory conduction Acetylcholine is a neurotransmitter 4e It causes activation of the post-synaptic neurone 5a Parkinson's disease 5b Prescription of l-dopa Serotonin linked to feelings of happiness and contentment. 5c Loss of serotonin means that these brain neural pathways are no

INSPECTION COPY

C1: Working v	, , , , , , , , , , , , , , , , , , ,
Question	Answer
1a	In order: speed oscillation periodic time frequency displacement amplitude
1b	Amplitude Velocity
1c	Speed f Frequency λ Wavelength v
2a	Wave A is transverse; wave P is logith in all (Wave A is transverse). Such direction of oscillation is at right speed (Warter Soft gradinal because) the direction of oscillation is in the was speed
2b	 Light waves Waves on water surface Seismic S-waves Longitudinal – one from: Sound waves Seismic P-waves
2 c	$\lambda = 1.0/2.5$ $\lambda = 0.40 \text{ m}$ $v = f\lambda$ $f = \frac{v}{\lambda}$ $f = \frac{30}{0.40}$ $f = 75 \text{ Hz}$
2di	π radians or 180°
2dii	2π radians g
2diii	ra 1 3 360 °
3a	ves in phase / waves have constant phase difference and with the same frequency
3b	In constructive interference the amplitudes of two waves add to a In destructive interference the opposite amplitudes of two waves a
3c	C Multiple of 180 °
	I *

INSPECTION COPY

Question	Answer		
3d	A $n\lambda$ (where $n = 0, 1, 2$)		
4a	Diffraction		
4b	Central spot		
4c	Diffraction gratings split up white light into its component colours Missing wavelengths represent the energy as rbed by excited gas Each type of gas absorbs different fine gas, specific to the type of		
5a	Wave drawn with the strift and avelengths Nodes and strictly identified Antinode Node		
5b	A wave travels backwards and forwards along a cavity/string, into Nodes appear at points of destructive interference, antinodes at poconstructive interference		
5c	Stationary waves set up in the rist is a number's horn Many possible har produced in the horn, producing many sound at coal and a c		
5d	$\mu = \frac{1}{2.0}$ $\mu = 7.5 \times 10^{-3} \text{ kg m}^{-1}$ $v = \sqrt{\frac{T}{\mu}}$ $v = \sqrt{\frac{15}{7.5 \times 10^{-3}}}$		

INSPECTION COPY

 $v = 44.7 \text{ m s}^{-1}$

C2: Waves in communication

Question	Answer		
1a	C. Normal		
1b	Water		
1c	$ v = \frac{c}{v} \\ v = \frac{n}{n} \\ v = \frac{3.0 \times 10^8}{1.2} \\ v = 2.5 \times 10^8 \text{ m s}^{-1} $		
1d	$n = \frac{\sin i}{\sin r}$ $\sin r = \frac{\sin i}{n}$ $r = \sin^{-1} \frac{\sin i}{n}$ $r = \sin^{-1} \frac{\sin i}{\sin 12}$ $r = 8.5^{\circ}$		
2a	Reflecting when meeting cladding-core boundary At angle (roughly) equal to incidence		
2b	$\sin C = \frac{1}{n}$ $C = \sin^{-1} \frac{1}{n}$ $C = \sin^{-1} \frac{n}{1.57}$ $C = 39.6^{\circ}$		
2c	1 mark each for every two correct words in order: higher total internal reflection interface lower		
2d	Provide light on the inside of the body Transmit images back to screen		
3a	An analogue signal can take any value A digital signal is transmitted as by ast or in the second sec		
3b	Less interference Can send A A S of data along a single fibre		
3c	ow A and F reversed)		
3d	B Can send multiple sets of data along a single fibre		

INSPECTION COPY

C3: Use of electromagnetic waves in communication

Question		A	nswer
1a	In order: all a vacuum c fastest without		
1b	A $3.00 \times 10^8 \text{m}$		
2a	ve.s 🤟 12 la	W	
2b	$k = Ir^{2}$ $k = 3.2 \times 0.5^{2}$ $k = 0.8$ $I = \frac{0.8}{4.0^{2}}$ $I = 0.05 \text{ W m}^{-2}$		
	Region	Frequency	Application
	Radio	3 kHz to 3 GHz	Television and radio brophone communication
3a	Microwave	3 GHz to 300 GHz	Cooking food, radar, sat communication
	Infrared	300 GHz to 400 THz	Cooking food, night-vision s
	Visible	400 THz to 8 0 Hz	Auman sight, photograp
	Ultraviolet	300 532 to 30 PHz	Forensic analysis, disinfe zappers
•	ri .	30 PHz to 30 EHz	Medical imaging
E	Gamma rays	> 30 Ehz	Medical imaging, radiot sterilisation
3b	(Lower frequency) radio waves bounce off the atmosphere and on (Higher frequency) microwaves penetrate the atmosphere more eastellites		
3c	Bluetooth devices broadcast in short bursts across a range of freque while Wi-Fi broadcasts continuously, so the Bluetooth can only interfere with Wi-Fi for short, unnoticeal		
3d	Some diffraction so don't require direct line of sight Not absorbed/scattered by water in atmosphere		
3e	Unlikely to reflect or diffract so difficult to direct Likely to pass through receiver		
Parigerous for numars			

INSPECTION COPY

