Practice Exams for A Level OCR Chemistry A

Paper 3

P D Davey

zigzageducation.co.uk

POD 7599

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

Contents

Thank You for Choosing ZigZag Education
Teacher Feedback Opportunity
Terms and Conditions of Use
Teacher's Introduction
Mark Distribution across all Papers
Mark Distribution across Paper 3s
Write-on Practice Paners
Write-on Practice Papers
Practice Paper 3B
Practice P 30
Practice I D
Non-write-on Practice Papers
Practice Paper 3A
Practice Paper 3B
Practice Paper 3C
Practice Paper 3D
Mark Schemes
Practice Paper 3A
Practice Paper 3B
Practice Paper 3C
Practice Paper 3D
Tractice ruper ob

NSPECTION COPY

Teacher's Introduction

This pack contains four Practice Paper 3s for the OCR A Level Chemistry (A) specification 2017). The papers and corresponding mark schemes in this pack are modelled on material provided by the board.

Paper 3 is entitled 'Unified Chemistry' and covers:

- Module 1: Development of Practical Skills in Chemistry
- Module 2: Foundations in Chemistry
- Module 3: Periodic Table and Energy
- Module 4: Core Organic Chemistry
- Module 5: Physical Chemistry and Transition Element
- Module 6: Organic Chemistry and Analysis

This paper is designed so it can always either a mock examination or a revision designed with both stude that always teachers in mind, allowing students to mark their progress. (The list he mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in their states of the mark scheme resembles that produced by OCR in the mark scheme resembles that produced by OCR in the mark scheme resembles that produced by OCR in the mark scheme resembles that produced by OCR in the mark scheme resembles that produced by OCR in the mark scheme resembles that produced by OCR in the mark scheme resembles that produced by OCR in the mark scheme resembles that produced by OCR in the mark scheme resembles that produced by OCR in the mark scheme resembles that produced by OCR in the mark scheme resembles that produced by OCR in the mark scheme resembles the mark scheme resemb

Each practice paper contains both short and longer questions in proportion to the sample assessment material. This includes factual recall, explanation and discussion questions, with two 6-mark 'Level of Response' questions per paper, indicated with an asterisk (*).

Al³ We

Sp

as

Papers have been designed to ensure that the 'Mathematical Skills' and 'Practical Activity Groups' (PAGs) specified in the new syllabus are assessed, as well as 'How Science Works' aspects of the syllabus.

Across the three practice paper packs (Papers 1, 2 and 3), coverage of the specific specification analysis grid is also included, enabling teachers to identify questions exam-technique activities, or as homework assignments.

The author has aimed to include a spread of material from the relevant topics in obtain an overview of their students' knowledge and understanding for each unit.

I hope you and your students find this pack useful.

USPECTION COPY

COPYRIGHT PROTECTED

Free Updates!

Register your email address to receive any future free umade to this resource or other Chemistry resources you has purchased, and details of any promotions for your

 resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

Go to zzed.uk/freeupdates

Mark Distribution across all Pap

		TOTAL		1A	1B	10	1D	***************************************
toms, Equations & Formulae		13		8	4	<u> </u>	6	
Reacting Masses & Gases		36		3		6	4	
	Titrations	24			3	7	1	
Acids, bases & redox	Redox	10		1	3	1		
	Structure	31	***************************************	2	7	2	5	
	Bonding	31		3	3	3	3	
	_							
riodicity, Group 2 & Group 7	Periodicity	43		5	5	5	15	
Qual Tests		8		1		4	1	
	Enthalpy Calculation	14			- 1		6	
Enthalpy	Bond Enthalpies	12		\		1		
	Hess	1,20		1	5	1	3	
Rates & Eqm	Rates	22		6	2	6	1	
	Le Chr	₁ - 11			4		1	
		4.0				_	_	I
Basic Concepts		19						
Alk-		15				_		
	Properties & Reactions	24	·····					
	Addition Polymers	13				<u> </u>	<u> </u>	
Alcohols & Harogenoalkanes	Alcohols	16					<u> </u>	
	Halogenoalkanes	15		<u> </u>	 	<u> </u>	<u> </u>	***************************************
Synthesis	Practical Techniques	5		_		<u> </u>	<u> </u>	
Analytical Techniques	IR	13		_		<u> </u>	<u> </u>	***************************************
	Mass Spec	9						
	How fast	41		13	11	7	3	
	RDS	13			2	3		
Rates & Eqm (quant)	Arrhenius	13		\vdash			8	
nares or cann (quant)	Kc	14	***************************************		3	6	٠	
	Kp	25		6	9	2	5	
	Ka and pH	30		8	6	6	2	***************************************
	Buffers	31		٥	-0	6	10	
	Neutralisation & Indicators	9		1	4	1	-10	
	Lattices	12		6	4	2		
Enorce	Born-Haber	25		6	6	4	1	
Energy	Gibbs and Entropy	18		3	1	6	2	
	Redox Titrations	15		6	9	-0		
		18		4	9	5		
edox & Electrode Potentials	Electrode Potential setup	17		4	1	3	2	
	Electrode Potential theory	13		1		3	7	
	Fuel Cells Complexes	37		7	8	2	9	
Transition Flowt.	Complexes				_	_	5	
Transition Elements	Reactions	20 17		1	2	6 5		
	Analysis	1/				-5		J
Aromatics	Theory	21						
	Reactions	17						
	Phenol	9						
Carbonyls	Reactions	14						
	Tests	1,23		- Page 1	P	T		
Carboxylic acids		7						
Esters & Acyl Chlorides		10						
Nitrogen Compounds	Amin	22						
<u></u>	an auds & Amides	9				_		
		11				<u> </u>		***************************************
Conden me.		12				_	t	
C-C boi	Nitriles	11				_		***************************************
Synthesis	Reflux	9				 		
	Purification	20				<u> </u>		
	Synthetic Routes	27					 	
Analysis	Chromatography	16				\vdash		
railalysis	Qualitative Tests	12		\vdash		\vdash		
	NMR	29				\vdash		***************************************
	Combined Techniques	16				\vdash		
	Combined recilliques	10		<u> </u>				
	1000111100111100111100011110001111001111			32	31	35	37	
	MATHS			24				

NSPECTION COPY

INSPECTION COPY

Mark Distribution across Pa

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			₹	}	}	\$	9	8		t	3	2	3	3
Reacting Masses & Gases			9	7 9						İ		+		
Acids, bases & redox	Titrations		,	,	+		T			9	G	+	+	
	Redox		-				-				,	+		
Structure and bonding	Structure		-				İ					<u> </u>		L
	Bonding		2	2				Access to the second						
					ľ									
Periodikity, Group 2 & Group /	Periodicity		7		7		T			α	4	+	- C	
	Enthalny Calculation		t	-	-		l	İ		, 4		(2	J	
Enthalby	Bond Enthalpies		2			2						,	-	
	Hess							Post of the last o						
Rates & Eqm	Rates		3					3						
	Le Chatelier		4		4	4	7	- Control			\dashv	\dashv	4	_
Basic Concepts				-				Г						₽
Alkanes														
Alkenes	Properties & Reactions											Н		
	Addition Polymers							40000						
Alcohols & Halogenoalkanes	Alcohols			1	4		1	4000		m		e	-	
Sunthecia	Halogenoalkanes Dractical Techniques		1	+				-		İ		+		
Analytical Techniques	<u> </u>	-		-				Accept		İ		+		
	Mass Spec													
	•		ŀ							,				
	HOW Tast		-	+				7 6		,		"		
Bates & Form (curant)	Arrhonius		1	+	1			t		4	\dagger	+	+	u
(manh) mha w consu	Silling		u			ď		Ī		1		+		
) Ş		†	+	-					I		+		
	Ka and pH		L	-						4	4			
	Buffers		œ		60			İ						
	Neutralisation & Indicators													
	Lattices													
Energy	Born-Haber		1	+				*				+		
	Gibbs and Entropy		1	+	1		T	William A			+	+	+	
	Redox Titrations		1				Ť			Ì		+	-	
Redox & Electrode Potentials	Electrode Potential setup		، ه	2 6			Ť	A COLOR		,	\dagger			
	Electrode Potential theory		1	0			T			,	\dagger			
	sexelumo		~	+	8			İ		ļ		2		
Transition Elements	Reactions		2				2			7		2		
	Analysis			Н	Ц		П			3	Н	Н	3	
Aromotics Anomatics	H			-	-			-					_	
Alonacks	Vicent		1	+	+		ı			İ	\dagger	+	+	
	Phenol			+	+		t	T		İ	t	+	+	
Carbonvis	Reactions									8		3	-	
	Tests													
Carboxylic acids														
Esters & Acyl Chlorides			1			=				4				4
Nitrogen Compounds	Amines		2				2					_		
	Amino acids & Amides			-	_						1	\dashv	_	
	Chirality		1					\forall				1		
Condensation polymers			,	+				4				+		
C-C Bond Tormation	NITTHES De-H		7 ,		1	٠		7		İ	\dagger	+	+	
Skunisas	vellax.		7	+	-	7		t		İ	ł	+	+	
	Synthetic Routes		t	<u> </u>				1		4		4		
Analysis	Chromatography		L							8				
	Qualitative Tests											\vdash		
	NMR analysis		2			5								
	Combined Techniques			Н	Ц		П				Н	Н	Ц	Ц
		Total	20	10 10	13	19	∞	10	Total	20	14	18 16	9	g
		Maths		⊢	4	2		Г	Maths		10	2		4

ZigZag Practice Exa Supporting A Level OCR

Chemistry A Unit H432

Practice Paper 3B

Name

Time allowed

1 hour 30 minutes

Information

 The total number of marks available for this paper is 70. The number of marks available for each question is shown in brackets.

SNON COSA

Answer all questions and show all working.

You will need:

An OCR A Chemistry data sheet

You may use:

- A scientific or graphical calculator
- A pencil for graphs and drawings
- A ruler

INSPECTION COPY

Paper 3B

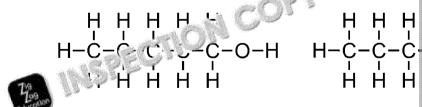
A 0.0200 g piece of magnesium was reacted with 50.00 cm³ of HNO₃ of until all the magnesium dissolved. Write an equation for the reaction of magnesium and nitric ac a) Explain whether the reaction with HNC vould be more or le been used instead of magnesium The remaining acid was made up to 250 cm³ with distilled water,

was titrated against 0.150 mol dm⁻³ NaOH. The titration was repe were achieved. The table below shows the results of each titration

b) i) Complete the table to work out the mean titre to one decimal

	Titration 1	Titration 2	Ti
Start reading (cm³)	0.00	22.60	
End reading (cm³)	22.60	44.95	
Titre (cm³)			
Mean titre to 1 d.p. (cm³)			

The burette has digital to a 0.1 cm³. State which of the four expenses percenta 🥫 🐧 🐧 🖰 amty in the titre, and calculate the percentage



c) i) Use the mean titre to work out the moles of HNO3 that remain the magnesium.

NSPECTION COPY

ii) ey swer to c (i) to calculate the pH of the nitric acid b

2. Compound J and K are related compounds that can both be burnt as fu

Compound J

Compound

a) Give the IUPAC names for compound J and K

Compound J:

Compound K:

COPYRIGHT PROTECTED

Zig Zag Education

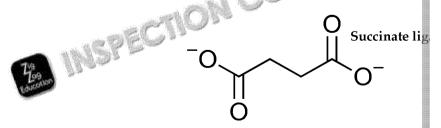
	iction using mo	olecular formulae.	
••••	•••••		
••••			
••••			
			-siú
			.,
Us	e the bond 😜	ارم کارم کارم کارم کارم کارم کارم کارم ک	valculate the enthalpy of c
1		Bond	Average bond
		O=O	
		C=O	
		C-O	
		С–Н	
		C–C	
		О-Н	
••••			
••••	••••••		
••••			-556
			- C 2 J
aı		perimental values ob	lated in the gaseous state
	_		
i)	_	-	ues are likely to be more e enthalpies given in part c

INSPECTION COPY

ii) Predict whether the difference between the experimental valu using the bond enthalpies in part c) is likely to be greater for c Justify your prediction. e)* diagram to support your answer, how simple lab ralculate an accurate experimental value for the enthalpy provided in a spirit burner as shown below. You do not need to ir Compound J

NSPECTION COPY

3. Vanadium is an element that forms a rich variety of aqueous complexe containing both organic and inorganic ligands.


One example is the bidentate oxalate ligand, which may be abbreviated

a) Write an equation for the formation of [V(ox)313- from a hexaaqua is assuming that the vanadium is neither and education the

100ECIVO.	

b) [V(ox)₃]³-can exist as optical isomers. Draw the structure of these that oxalate binds through the two C–O- oxygens.

c) A related organic ligand, known in bigg gv is the succinate ligand

i) Give the IUPAC name for this ion.

NSPECTION COPY

ii) Suggest the reagents and any relevant conditions needed to for C₄H₈Br₂ in three steps, drawing the structure of the intermedia

5 (), ()
K. 6

d) Conversions between vanadium complexes in different oxidation electrochemical half cells. Some standard electrode potentials that vanadium half cells are shown.

①
$$VO_{2^{+}} + 2H^{+} + e^{-} \rightleftharpoons VO^{2^{+}} + H_{2}O$$
 $E^{\theta} = +($

②
$$VO^{2+} + 2H^+ + e^- \rightleftharpoons V^{3+} + H_2O$$
 $E^{\phi} = +0$

③
$$V^{3+} + e^{-} \rightleftharpoons V^{2+}$$
 $E^{\bullet} = -0$

Explain what vanadium-containing species would be predicted i) separately, with I2 and with magnesium metal, given the addi below. Justify your answer.

ii)	The different oxidation states of vanadium in solution all have rate of any reactions that occur between V ³⁺ with zinc metal occurrency. Explain why calibration would be needed in or calibration would be carried out.

A chamist for

4. A chemist found two bottles of unknown salts, P and Q. The chemist confirm the identity of the chemicals.

Test 1: Add NaOH and warm gently. Test any vapours with damp red

Test 2: Add AgNO $_{3(aq)}$, followed by dilute NH3.

Test 3: Add BaCl_{2(aq)}.

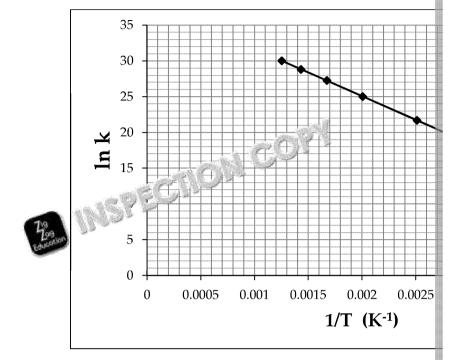
	Compound P	
Test 1	Light brown precipitate observed on addition; goes dark brown on warming	No char tu
Test 2	White precipitate; dissolves on addition of ammonia	ľ
Test 3	No change observed	WI

a)	i)	Identify compound P.

ii) equation, including state symbols, for the formation test 2 is carried out on compound P.

b)	What conclusion can be drawn from the reaction of compound Q

INSPECTION COPY


The chemist concluded that test 3 shows that compound Q contain c) the chemist is wrong to conclude this, and how this test should be confirm the identity of compound Q. Compound F is an important a gent in synthesis. It can be used in real and phenols. Compound F Give the structural formula of compound F. b) i) Draw the product if one molecule of F reacts with one molecule ECLION CON am one advantage and one disadvantage, in terms of sust ompound F to make this product rather than using a suitable

INSPECTION COPY

c) The rate of the reaction of compound F with diethylamine varies with against 1/T for this reaction is shown below.

i) Work out the activation energy for this reaction in kJ mol⁻¹, sh

ii) Calculate the rate, in mol dm⁻³ s⁻¹ at 350 K, if the reaction is fir reactants, and concentrations of 0.0200 mol dm⁻³ of both are us

INSPECTION COPY

6.* Thin-layer chromatography is used extensively in organic chemistry to compounds for the purpose of analysis. When used for simple analysi to be used, with the solvent being varied depending on the substances The solvent used to carry out the chromatography has to be carefully c compounds in different homologous series or with different functional is chosen, all the compounds end up at the top or remain at the bottom Outline why different solvents can be used to separate different organia similar attraction for silica. You should refer to the bonding in specific your answer.

NSPECTION COPY

ZigZag Practice Exa Supporting A Level OCR

Chemistry A Unit H432

Practice Paper 3B

Name

Time allowed

1 hour 30 minutes

Information

 The total number of marks available for this paper is 70. The number of marks available for each question is shown in brackets.

NON COPY

Answer all questions and show all working.

You will need:

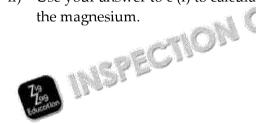
An OCR A Chemistry data sheet

You may use:

- A scientific or graphical calculator
- A pencil for graphs and drawings
- A ruler

INSPECTION COPY

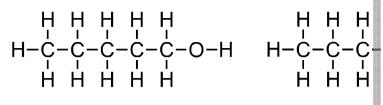
Paper 3B


- 1. A 0.0200 g piece of magnesium was reacted with 50.00 cm³ of HNO₃ of until all the magnesium dissolved.
 - a) i) Write an equation for the reaction of magnesium and nitric ac
 - ii) Explain whether the reaction with HNO₃ would be more or lebeen used instead of magnesium.

The remaining acid was and e pro 250 cm³ with distilled water, a was titrated again of 150 mol dm³ NaOH. The titration was reperturbed to the table below shows the results of each titration

b) i) by and complete the table to work out the mean titre to one

	Titration 1	Titration 2
Start reading (cm³)	0.00	22.60
End reading (cm³)	22.60	44.95
Titre (cm³)		
Mean titre to 1 d.p. (cm ³)		


- ii) The burette has divisions of 0.1 cm³. State which of the four experiment percentage uncertainty in the titre, and calculate the percentage experiment.
- c) i) Use the mean titre to work out the moles of HNO₃ that remain the magnesium.
 - ii) Use your answer to c (i) to calculate the 1. of the nitric acid b the magnesium.

2. Compound J and K are related compounds that can both be burnt as fu

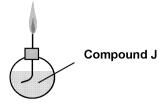
Compound J

Compound

- a) Give the IUPAC names for compound J and K
- b) Describe how compound K at a naue from compound J, and gi reaction using molecular p mulae.
- c) Use bond enthalpy data below to calculate the enthalpy of com

Bond	Average bond en
O=O	49
C=O	79
С-О	35
С–Н	41
C–C	34
О-Н	46

- d) The values in the table above are calculated in the gaseous state, w and, therefore, experimental values obtained by burning these con from the value you calculated.
 - i) Explain whether experimental values are likely to be more or values calculated using the bond enthalpies given in part c).
 - ii) Predict whether the difference betw are experimental valuating the bond enthalpies in an characteristic be greater for constitution.



COPYRIGHT PROTECTED

CIION COI

e)* Explain, using a diagram to support your answer, how simple laboused to calculate an accurate experimental value for the enthalpy oprovided in a spirit burner as shown below. You do not need to in

3. Vanadium is an element of a rich variety of aqueous complexe contains on a same and inorganic ligands.

One example is the bidentate oxalate ligand, which may be abbreviated

- a) Write an equation for the formation of $[V(ox)_3]^{3-}$ from a hexaaqua is assuming that the vanadium is neither oxidised nor reduced in the
- b) $[V(ox)_3]^3$ -can exist as optical isomers. Draw the structure of these that oxalate binds through the two C–O-oxygens.
- c) A related organic ligand, known in biology as the succinate ligand

- i) Give the IUP \ am \ or this ion.
- ii) gest the reagents and any relevant conditions needed to for C₄H₈Br₂ in three steps, drawing the structure of the intermedia

INSPECTION COPY

d) Conversions between vanadium complexes in different oxidation electrochemical half cells. Some standard electrode potentials that vanadium half cells are shown.

①
$$VO_{2^{+}} + 2H^{+} + e^{-} \rightleftharpoons VO^{2^{+}} + H_{2}O$$
 $E^{\bullet} = +0$

②
$$VO^{2+} + 2H^+ + e^- \rightleftharpoons V^{3+} + H_2O$$
 $E^{\bullet} = +0$

③
$$V^{3+} + e^{-} \rightleftharpoons V^{2+}$$
 $E^{\Theta} = -0$

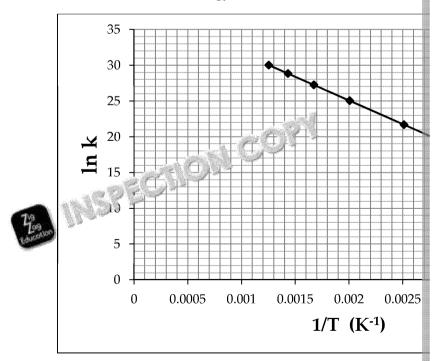
i) Explain what vanadium-containing species would be predicted separately, with I₂ and with magnesium metal, given the additional below. Justify your answer.

$$E^{\bullet} = -2$$

- ii) different oxidation states of vanadium in solution all have rate of any reactions that occur between V³⁺ with zinc metal callorimetry. Explain why calibration would be needed in ord calibration would be carried out.
- 4. A chemist found two bottles of unknown salts, P and Q. The chemist confirm the identity of the chemicals.
 - Test 1: Add NaOH and warm gently. Test any vapours with damp red
 - Test 2: Add AgNO_{3(aq)}, followed by dilute NH₃.
 - Test 3: Add BaCl_{2(aq)}.

	Compound P	
Test 1	Light brown precipitate observed on addition; goes dark brown on warming	No char tu
Test 2	White precipitate; dissolves on addition of ammonia	1
Test 3	No change observed	WI

- a) i) Identify comp d c
 - ii) e an ionic equation, including state symbols, for the forma when test 2 is carried out on compound P.


INSPECTION COPY

- c) The chemist concluded that test 3 shows that compound Q contain the chemist is wrong to conclude this, and how this test should be confirm the identity of compound Q.
- 5. Compound F is an important reagent in synthesis. It can be used in rea and phenols.

- a) Give the structural formula of compound F.
- b) i) Draw the product if one molecule of F reacts with one molecule
 - ii) Explain one advantage and one disadvantage, in terms of sust compound F to make this product rather than using a suitable
- c) The rate of the reaction of compound F with diethylamine varies In k against 1/T for this reaction is shown below.
 - i) Work out the activation energy for this reaction in kJ mol-1, sh

ii) Calculate the rate, in mol dm⁻³ s⁻¹ at 350 K, if the reaction is fir reactants, and concentrations of 0.0200 mol dm⁻³ of both are us

6.* Thin-layer chromatography is used extensively in organic chemistry to compounds for the purpose of analysis. When used for simple analysis to be used, with the solvent being varied depending on the substances

The solvent used to carry out the chromatography has to be carefully compounds in different homologous series of variational is chosen, all the compounds end in the compound end in the compound end in the compound end i

Outline why different organismilar and the conding in specific your and the conding in the conding in the conding in the conding in the conding in the condition of the conding in the conding in the conding in the conding in the conding in the condition of the conding in the conding in the condition of the condi

NSPECTION COPY

Preview of Questions Ends Here	
Preview of Questions Ends Here This is a limited inspection copy. Sample of questions ends here to avoid students prev questions before they are set. See contents page for details of the rest of the resource.	
This is a limited inspection copy. Sample of questions ends here to avoid students prev	
This is a limited inspection copy. Sample of questions ends here to avoid students prev	

Mark Schemes

Practice Paper 3A

1 a) Moles of CO₂ produced in experiment $1 = \frac{24.58 - 23.75}{44} = 0.01886$

Moles of YO produced in experiment 1 = 0.01886 \checkmark

$$A_r \text{ of } Y = \frac{23.75 - 21.80}{0.01886} - 16 = 87.4$$

 $Y = Sr \checkmark$

Moles of water produced in experiment $2 = \frac{23.42 - 22.40}{18} = 0.05667$

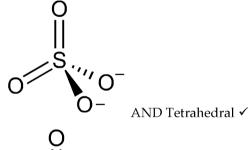
Moles of ZSO₄ produced = $\frac{0.05667}{6}$ = 9.444 × 10⁻³

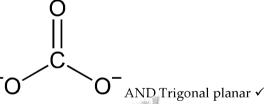
Ar of $Z = \frac{22.40 - 20.94}{9.444 \times 10^{-3}} - 32.1 - (4 \times 16) = 8.5$ (r). o from calculator value)

 $Z = Ni \checkmark$

b) Incomplete 16 of osmon/dehydration of starting material ✓ H 4 il constant mass ✓

OR


'Spitting' of solid out of crucible \checkmark


Use a lid (half on) ✓

OR

Starting material includes impurities (which do not decompose) ✓ Purify the solid before starting ✓

c)

(AWARD 1 mark if both diagrams are correct and shape names are given

- d) $2 \text{ CH}_3\text{CH}_2\text{COOH} + \text{YO} \rightarrow (\text{CH}_3\text{ at.})_{21} + \text{H}_2\text{O}$ Correct salt formulative by lang else correct \checkmark
- 2 a) C'ara are delocalised electrons in aluminium metal AND ions ir
 - b) The sign of the standard electrode potential shows that reduction of Al³ of H⁺ ✓ (ALLOW AW in terms of gain of electrons, but must be link to sign of the electrons flow from the aluminium electrode to the hydrogen. The hydrogen electrode is the positive electrode AND the aluminium electrode is the positive electrode.

NSPECTION COPY

4			
		A A	
		NAME AND ADDRESS OF TAXABLE PARTY.	
		Carlo Carlo	
		A STATE OF THE PERSON NAMED IN	
	-		
			y

	LEVEL OF RESPONSE QUESTION
Level 3: (5–6 marks)	Answer is structured in an entirely ordered mannificuded, and there is an error-free description of sign of the standard electrode potential.
Level 2: (3–4 marks)	Answer is mostly structured in an ordered manne included, and there is a mostly error-free descriptivalue of the standard electrode potential.
Level 1: (1–2 marks)	Answer has limited structure. Some key experime logical attempt to suggest how to determine the variables.
0 marks	No creditworthy response

Indicative Content

- 298K
- 1.00 mol dm⁻³ corporation is of solution (ALLOW equal)
- 100 LPa production fundame gas
- Linum electrode in a solution of the two Sn ions / chloride io
- C the value on the voltmeter
- Subtract (-1.66) from value on voltmeter, then take the negative of this
- This is the standard reduction potential
- Over time, the reactants are used up, causing the conditions to be non-s
- Equilibria shift as a result (and the reading on the voltmeter changes)
- - b) i) Binds to oxygen in the lungs ✓Releases oxygen in the muscles / where it is required (for respiration)
 - ii) 1s²2s²2p⁶3s²3p⁶3d³ ✓
 - iii) ANY TWO OF:

The same number of protons is holding fewer electrons ✓

The electrons are drawn closer to the nucleus ✓

Therefore, more energy is needed to overcome the nuclear/electrosta

c)
$$K_a = 10^{-pKa} = 10^{-pKa} = 10^{-4.873} = 1.14 (1')^{-5} \checkmark$$

$$K_a = \frac{[CH_3CH_2COO-][H+]}{[CH_3CH_2COOH]} \text{ so } C^{-1} \text{ (} C^{-1} \text{) } C^{-1} \text{ (} C^{-1} \text$$

Two molecules join to form a larger molecule with the loss of water / a sn 4 a)

Peaks as below. Shifts given as ranges; allow peaks anywhere within this b) Four peaks ✓

Shifts correct ✓

Splitting ✓✓ (AWARD 1 mark for three correct, 2 marks for all four) Integrations correct ✓

Shift (ppm)	Splitting	Integra
0.5–1.9	Singlet	9
2.0–3.0	≨. √2t J	2
3.1–4.3	Quartet	2
- (-1.5)	Triplet	3

c) k, the condenser is vertical and is used to condense chemicals ask (for further reaction) ✓

> In distillation, the condenser is off the side, and is angled to condens into a separate flask for collection ✓

ii)
$$K_C = \frac{[Ester]}{[Carboxylic\ acid] \times [Alcohol]} = \frac{[Ester]}{[Carboxylic\ acid]^2}$$
so $[Carboxylic\ acid] = \sqrt{\frac{[Ester]}{K_C}} \checkmark$

$$[Carboxylic\ acid] = \sqrt{\frac{0.25}{38}} = 0.08111 \checkmark (ALLOW\ 0.0811)$$

Eqm moles (Carboxylic acid) = Concentration \times Volume

Eqm moles (Carboxylic acid) =
$$\frac{0.08111 \times 200}{1000} = 0.01622 \checkmark$$

Start moles (Carboxylic acid) = $0.01622 + 0.05 = 0.06622 \checkmark$

Start concentration (Carboxylic acid) =
$$\frac{0.06622}{95} \times 1000 = 0.697$$
 (mol d

NSPECTION COPY

4		
(2		
	U	

Indicative Content

0 marks

Level 3: (5-6 marks)

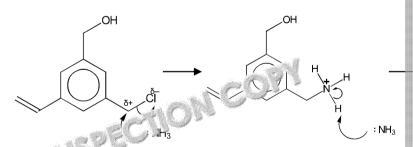
Level 2: (3-4 marks)

Level 1: (1-2 marks)

• Exothermic means * no \ e..ergy is released when new bonds

No creditworthy sponse.

Answer is structured in an entirely ordere

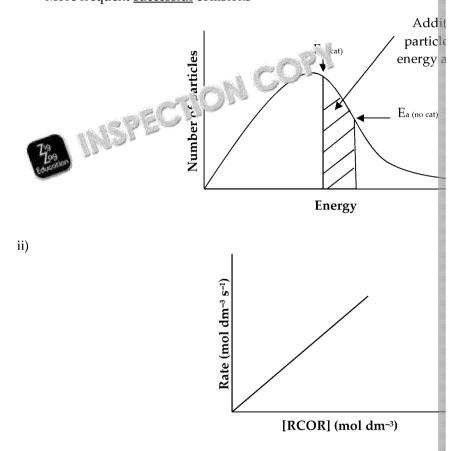

enthalpy and of the effect of temperature of K_c are comprehensive and correct.

Answer is mostly structured in an ordered

enthalpy and of the effect of temperature of K_c are correct, but there may be gaps in Answer has limited structure. Statements

correct but the statements are not linked t

- ... than the an anti-neargy absorbed to break bonds in the reactions.
- Increase in temperature of equilibrium to shift to oppose the increase in temperature
- the esterification reaction, this means a shift to the left
 Concentration of reactants increases and the concentration of processing
- This increases the value of the denominator and decreases the val expression (ALLOW AW)
- So the value of K_c decreases
- Adding additional reactant initially causes the value of K_c to decr
- The position of equilibrium then shifts in the direction to make madditional reactant
- In the esterification reaction, this means a shift to the right
- Concentration of product increases and concentration of reactant
- ... until the concentrations reach a position where the value of K
- 5 a) $NO_2^- + 6e^- + 8H^+ \rightarrow NH_4^+ + 2H_2O \checkmark$
 - b) i) (Light/pale) blue precipitate ✓
 - ii) $[Cu(H_2O)_6]^{2+} + 4 \text{ NH}_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4 \text{ H}_2O$ Correct complex formed \checkmark Rest of equation correct \checkmark
 - c) i)



ii) The (nitrogen in the) product still has a lone pair and will, therefore, haloalkane molecules ✓

- 6 a) i) Hydroxynitrile (or cyanohydrin) ✓
 - ii) Nucleophilic addition ✓
 - b) i) Activation energy is lower in the presence of a catalyst (as it can pro AND label on graph indicating this (see below) ✓
 Greater proportion of particles with energy above the activation ene have enough energy to react) ✓

More frequent <u>successful</u> collisions ✓

Straight line with positive gradient ✓

c) If the rate is multiplied by 8 (2×2×2), it indicates that the reaction is first species ✓ (IGNORE other interpretations, e.g. second, first and zeroth order this does not support mechanism 1 since H+ does not appear in the slower mechanism 2 since H+ and CN- and RCOR appear in or before the slower If the rate is multiplied by 4, it indicates the respect to the third species.

This supports mechanism (ALLOW interc') as of 'rate-determining step' and 'slowest step and ast once in the answer that the slowest step is the rate-of-

NSPECTION COPY

	Preview of Answ		sta la alcina un avacuora ta
This is a limited inspection		ends here to stop studer	
This is a limited inspection	copy. Sample of answers	ends here to stop studer	
This is a limited inspection	copy. Sample of answers	ends here to stop studer	