Practice Exams for AS Edexcel Biology B

Paper 2: Core Physiology and Ecology

zigzageducation.co.uk

POD 6815

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

Contents

Thank You for Choosing ZigZag Education
Teacher Feedback Opportunity
Terms and Conditions of Use
Teacher's Introduction
Specification Analysis Grid
Write-On Practice Papers
Practice Paper 2A
Practice Paper 2B
Practice Paper 2C
Practice Paper 2D
Non-Write-On Practice Papers
Practice Paper 2A
Practice Paper 2B
Practice Paper 2C
Practice Paper 2D
Mark Schemes
Practice Paper 2A
Practice Paper 2B
Practice Paper 2C
Practice Paper 2D
1

Teacher's Introduction

This pack contains **four practice paper 2s** for the **AS Edexcel Biology B** specificated 2015). The papers and corresponding mark schemes in this pack are modelled of material, provided by Pearson.

Paper 1 is entitled Core Cellular Biology and Microbiology and covers:

- Topic 1: Biological Molecules
- Topic 2: Cells, Viruses and Reproduction of Living Things

Paper 2 is entitled Core Physiology and Ecology and covers:

- Topic 3: Classification and Biodiversity
- Topic 4: Exchange and Transport

Questions for mock examinations and formative activities are in short supply for pack can be used for both purposes.

Each practice paper contains a range of short- and long-answer questions, similar specimen paper. Papers have been designed to ensure that the mathematical skin the new syllabus are assessed, and that short- and long-answer questions are Detailed mark schemes are included for each paper, but, as always, teachers should be provided in the paper. But, as always, teachers should be provided in the paper of the paper. But, as always, teachers should be provided in the paper. But, as always, teachers should be provided in the paper. But, as always, teachers should be provided in the paper. But, as always, teachers should be provided in the paper. But, as always, teachers should be provided in the paper. But, as always, teachers should be provided in the paper. But, as always, teachers should be provided in the paper. But, as always, teachers should be provided in the paper. But, as always, teachers should be provided in the paper. But, as always, teachers should be paper. But, as always

A specification analysis grid is also included, enabling teachers to identify questication use in tests and exam technique activities, or as homework assignments.

The author has aimed to include a spread of material from the relevant topics in obtain an overview of their students' knowledge and understanding for each unit

Write-on and non-write-on versions are included in this pack.

I hope you and your students find this pack useful.

Free Updates!

Register your email address to receive any future free made to this resource or other Science resources you has purchased, and details of any promotions for you

 resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

Go to zzed.uk/freeupdates

Specification Analysis Grid

Skill/content	2A	2B	
Classification/domain			
Electrophoresis and DNA sequencing/heterozygosity index			
Evolution through natural selection/pathogen evolution/speciation	Q5 Q1 (speciation) Q7 (speciation)	Q4	
Biodiversity index and heterozygosity index	Q7		
Transport mechanisms (all)	Q8Q9	Q7	
Gas exchange in animal	Q2	Q6 Q4	
Gas exchange plants	Q6	Q3	
Circulation and cardiac cycle and control	Q3		
ECG and pressure volume charts			
Blood and vessel components/clotting and atherosclerosis/tissue fluid	Q4	Q3	
Oxygen dissociation		Q9	
Transport in plants: transpiration/water transport/translocation		Q1 Q5	
Core practical tested	Core Practical 8	Core Practical 2 Core Practical 5	Core Core Core
% marks for practical skills	16%	16%	
% marks for quantitative skills	21%	19%	

ZigZag Practice Exa Supporting AS Edex

AS Biology Core Physiology and Ecology

Practice Paper 2B

Na	me

Time allowed

1 hour 30 minutes

Instructions

Answer **all** of the questions and use the space provided.
Use black ink. You may use an HB pencil for graphs and diagrams.
Show your working for questions that require calculations.
In questions marked with an asterisk (*), marks are awarded for the quality of your written communication.

Information

The total marks available for this paper is **80**. Use of an electronic calculator is permitted.

Paper 2B

1.	a)	Tick the relevant box to indicate the correct answer. Water enters the because the space inside the vascular bundle is the: hypertonic
	b)	Tick the relevant box to indicate the correct answer. Water can travel pathways. The fastest pathway to the Casparian strip is the: symplastic
	c)	The endodermis can control mineral uptake because active transport is
		Explain why active transport is selective.
2.	ape	ard cells control the opening and closing of stomata in plant leaves. A sturtures (guard cells and the stomata they surround) in eyepiece units (epsheyepiece unit of the eyepiece graticule measured 0.25 mm.
	2)	Calculate the diameter of each stomatal aperture in mm, and use your

mean diameter (mm).

Write all answers in the table. Show your working in the space below.

Stomatal aperture and guard cell diameter (epu)	Diameter of the
48	
56	
52	
Mean diameter of stomatal aperture in mm	

)	Explain how an increase in light intensity would affect the diameter of

3. a) i) Tick the row in the table that describes capillary structure.

Structural feature	Capillaries
Thick muscle layer	
Epithelium	
Thin muscle layer	
Wide lumen	
Pores	

ii) Tick the row that describes artery structure.

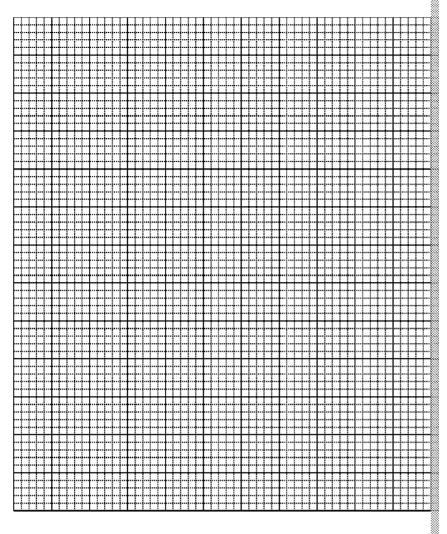
Structural feature	Artery
Thick muscle layer	
Epithelium	
Thin muscle layer	
Wide lumen	
Pores	

iii) Tick the row that describes vein structure.

Structural feature	Vein
Thick muscle layer	
Epithelium	
Thin muscle layer	
Wide lumen	
Pores	

Researchers measured the volume of fluids in and around capillary beds. The

Distance from arteriole (mm)	Volume of tissue fluid surrounding the capillary (mm ³)	Volume of fluid in capillary (mm³)
0	24	75
0.2	55	44
0.4	71	28
0.6	51	48
0.8 (start of venule)	22	73



- 4. Although the HIV virus can now be controlled effectively using a cocktail of develops rapidly. When resistant strains emerge, patient viral load (the nurincreases and so virus number is regularly monitored.
 - Use the space below to convert the figures provided into a suitable for on the following page, using error bars to show the spread of the data:

Viral load in untreated patients (viruses per ml ⁻¹ of blood)	Viral load in patients treated therapy (viruses per ml
15000000	243
16000001	136
15670983	169

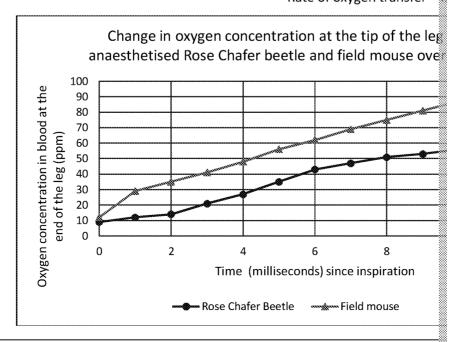
b) Calculate the percentage decrease in viral load in patients treated with of AIDS symptoms.

Percentage decrease =

c)	Describe how drug-resistant strains could emerge in the 'treated' pati

5. Describe how the transpiration stream is maintained. b) Tick the appropriate box to show which of the following substances are Water and minerals Glucose and amino acids Lipids and water Sucrose and amino acids Researchers completed an experiment using radioactive carbon dioxide to claim that translocation is not simply due to mass flow. They covered plant enclose them, and then pumped radioactive carbon dioxide into the bags. monitored distribution of the radioactive carbon dioxide and obtained the Use your biological knowledge and the data provided to explain how the evidence that translocation does not occur through mass flow alone. Plant region Concentration of radioactive carbon dio Untreated leaves 53 Untreated shoots 39 Treated leaves 23 Roots 39 **PROTECTED**

COPYRIGHT

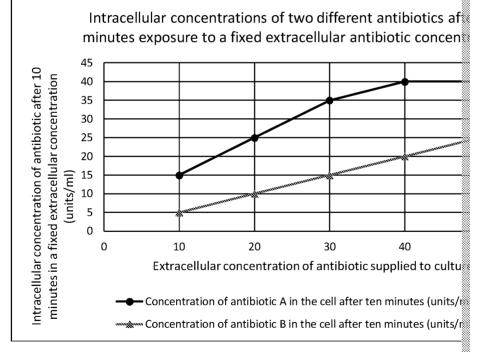

6. Mammalian gas exchange occurs in organs called lungs.

a)	Describe and explain three ways in which the gas exchange surface in naximise the gas exchange.
b)	Identify the gas exchange surface in mammalian lungs.
c)	Tick the appropriate box to indicate the correct term for the definitions in one direction at a constant speed'. Mass transport Mass flow Mass diffusion Mass movement Tick the appropriate box to indicate the correct term for the definitions in the correct term for the definition in the correct term for the correct term for the definition in the correct term for the correct t
d)	In insects, oxygen diffuses directly to the tissues.

a) III ilisects, oxygen alliases allectly to the tissues

Calculate the rate of oxygen transfer from the gas exchange site to the beetle and the field mouse, using the data shown in the graph.

Rate of oxygen transfer =

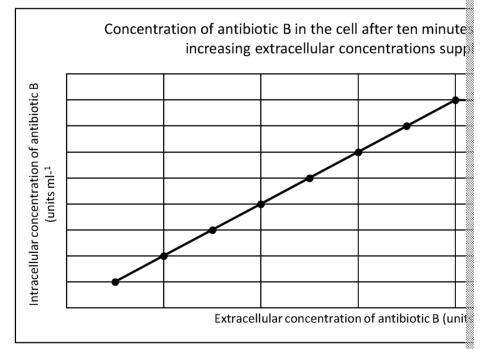


COPYRIGHT PROTECTED

Zig Zag Education

e) Explain why it is more appropriate to calculate rate of oxygen uptake to mice and beetles. f) Analyse the data and use your biological knowledge to explain why large to meet their oxygen requirements. Researchers are investigating the uptake of two new potential antibiotics for

7. Researchers are investigating the uptake of two new potential antibiotics for respiratory tract infections in children. To establish the mode of absorption, intestinal epithelial cells. They exposed the cells to increasing concentrations samples to measure intracellular concentrations after ten minutes. The result


a)	Use the data and your biological knowledge to identify the type of transport antibiotic A into the blood from the small intestine.
	Explain your choice.

b) From the current data it is not possible to establish whether antibiotic diffusion or facilitated diffusion.

Describe how the investigation could be extended to establish whether facilitated diffusion or simple diffusion.

When researchers extended their investigation to establish the transport mobtained the graph below.

c) Use the shape of the graph and your biological knowledge to describe Explain your reasoning.

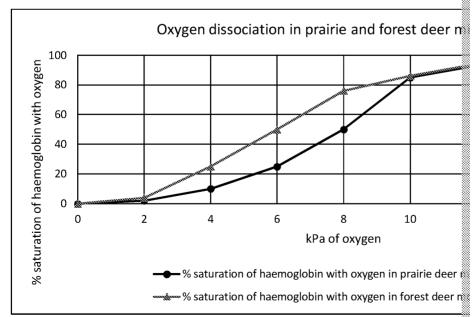
d) The cell membrane is described as a fluid mosaic model.

Draw the fluid mosaic model of the membrane and clearly label the comin the transport of antibiotic B.

e)	Explain why the transporter for antibiotic A does not transport antibiot

- 8. A student wanted to investigate the effect of increasing temperature on the pigment from beetroot cells. She used a cork borer with a diameter of 11 m beetroot tissue. She then used a ruler to cut the cylinder into five small slice length.
 - a) Use the formula $2(\pi r^2) + 2(\pi r) \times 1$ length to calculate the surface area of

b) Calculate the volume of each cylinder, using the formula $\pi r^2 x$ length, the volume ratio.



The student put the five discs in a boiling tube and submerged them in wate 80 °C water bath for ten minutes, then used a sieve to separate the water fr colour of the water using a colorimeter, and recorded the absorbance in a tall at temperatures of 65 °C, 45 °C, room temperature, and 4 °C, using freshly that the absorbance readings increased as the temperature was raised, and increases, the rate of diffusion of beetroot pigment from cells increases'.

c)	Describe the improvements that she would need to make to her experi conclusion valid.
d)	State why it is important to control the length and diameter of each dis

The graph below shows oxygen dissociation for two sub-species of deer mic forest deer mouse and the low altitude prairie wood mouse. The forest-dw different phenotype, exhibiting longer tails, ears, skulls and hind feet than t counterparts.

COPYRIGHT **PROTECTED**

a) Tick the definition of the term 'oxygen affir)	Tick the	definition	of the	term	'oxygen	affinit	y
--	---	----------	------------	--------	------	---------	---------	---

How many oxygen molecules bind to haemoglobin	
How readily oxygen molecules separate from haemoglobin	
How readily oxygen molecules bind to haemoglobin	
How easy it is to separate oxygen from haemoglobin	

Calculate the percentage increase in the oxygen affinity of forest deer deer mouse at 8 kPa of oxygen.

c) Forest and prairie deer mice are not classified as different species and do not appear to interbreed.

Use your biological knowledge and the information provided to explain	Ő
have a different phenotype and suggest why they do not interbreed.	

 	• • • • • • • • • • • • • • • • • • • •	 	 	

The table below shows the saturation of haemoglobin with oxygen and the the tissues of mutant and normal forest deer mice during exposure to low on

Mouse type	kPA of oxygen in tissues at low oxygen kPA	Haemogl oxyge	
'Normal' forest mouse	14		
'Mutant' forest mouse	8		

) Compare and contrast haemoglobin saturation and oxygen concentration function of the following the mutants would have a disadvant of the following the mutants would have a disadvant of the following the followi

ZigZag Practice Exa Supporting AS Edex

AS Biology Core Physiology and Ecology

Practice Paper 2B

Na	me	

Time allowed

1 hour 30 minutes

Instructions

Answer **all** of the questions and use the space provided.
Use black ink. You may use an HB pencil for graphs and diagrams.
Show your working for questions that require calculations.
In questions marked with an asterisk (*), marks are awarded for the quality of your written communication.

Information

The total marks available for this paper is **80**. Use of an electronic calculator is permitted.

Paper 2B

1. a) Select the correct answer. Water enters the xylem through the endode the vascular bundle is the:

hypertonic

• hypotonic

• isotonic

- apoplastic
- b) Tick the relevant box to indicate the correct answer. Water can travel apathways. The fastest pathway to the Casparian strip is the:

• symplastic

vacuolar

• hypertonic

- apoplastic
- c) The endodermis can control mineral uptake because active transport is Explain why active transport is selective.
- 2. Guard cells control the opening and closing of stomata in plant leaves. A stuapertures (guard cells and the stomata they surround) in eyepiece units (epsech eyepiece unit of the eyepiece graticule measured 0.25 mm.
 - a) Calculate the diameter of each stomatal aperture in mm, and use your mean diameter (mm).

Copy the table below and complete with your answers. Show your wo

Stomatal aperture and guard cell diameter (epu)	Diameter of the
48	
56	
52	
Mean diameter of stomatal aperture in mm	

- b) Explain how an increase in light intensity would affect the diameter of
- 3. a) i) Which option below describes capillary structure?

Structural feature		
Thick muscle layer	Thin muscle layer	Pores
Epithelium	Wide lumen	

ii) Which option below describes artery structure?

Structural feature		
Thick muscle layer	Thin muscle layer	Pores
Epithelium	Wide lumen	

iii) Which option below describes vein structure?

Structural feature		
Thick muscle layer	Thin muscle layer	Pores
Epithelium	Wide lumen	

Researchers measured the volume of fluids in and around capillary beds. The

Distance from arteriole (mm)	Volume of tissue fluid surrounding the capillary (mm³)	Volume of fluid in capillary (mm³)
0	24	75
0.2	55	44
0.4	71	28
0.6	51	48
0.8 (start of venule)	22	73

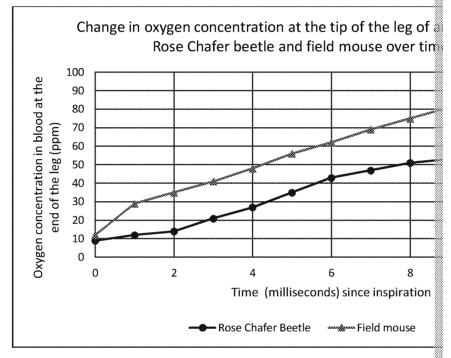
- b) Analyse the data and use your biological knowledge to explain the result obtained.
- c) Describe the fate of the tissue fluid that has not been reabsorbed into
- 4. Although the HIV virus can now be controlled effectively using a cocktail of develops rapidly. When resistant strains emerge, patient viral load (the nur increases and so virus number is regularly monitored.
 - a) Convert the figures provided into a suitable form and plot an appropriation show the spread of the data:

Viral load in untreated patients (viruses per ml ⁻¹ of blood)	Viral load in patients treated therapy (viruses per ml
15000000	243
16000001	136
15670983	136 169

- b) Calculate the percentage decrease in viral load in patients treated with of AIDS symptoms.
- c) Describe how drug-resistant strains could emerge in the 'treated' patie
- 5. a) Describe how the transpiration stream is maintained.
 - b) Which of the following substances are moved by translocation?
 - Water and minerals
- Glucose and amino acids
- Lipids and water
- Sucrose and amino acids

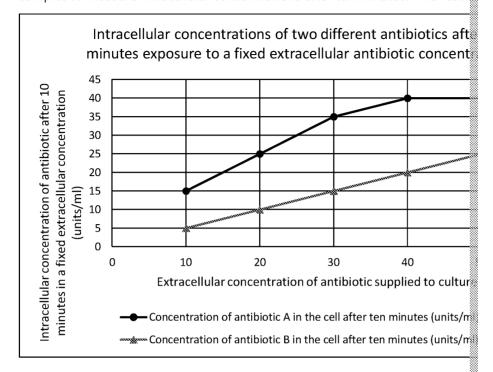
Researchers completed an experiment using radioactive carbon dioxide to possible that translocation is not simply due to mass flow. They covered plant enclose them, and then pumped radioactive carbon dioxide into the bags. The monitored distribution of the radioactive carbon dioxide and obtained the research of the radioactive carbon dioxide and dioxid

c) Use your biological knowledge and the data provided to explain how the evidence that translocation does not occur through mass flow alone.

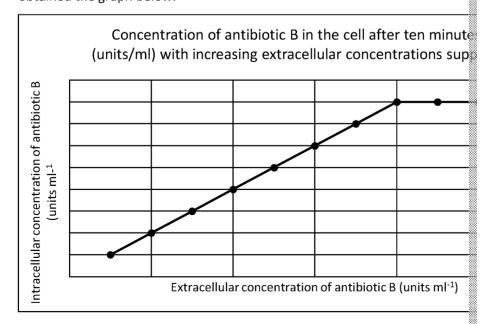

Plant region	Concentration of radioactive carbon diox
Untreated leaves	53
Untreated shoots	39
Treated leaves	23
Roots	39

- 6. Mammalian gas exchange occurs in organs called lungs.
 - a) Describe and explain three ways in which the gas exchange surface in maximise the gas exchange.
 - b) Identify the gas exchange surface in mammalian lungs.
 - c) Which of the following is the correct term for the definition: 'The move direction at a constant speed'.
 - Mass transport
- Mass flow
- Mass diffusion
- Mass movement
- d) In insects, oxygen diffuses directly to the tissues.

Calculate the rate of oxygen transfer from the gas exchange site to the beetle and the field mouse, using the data shown in the graph.



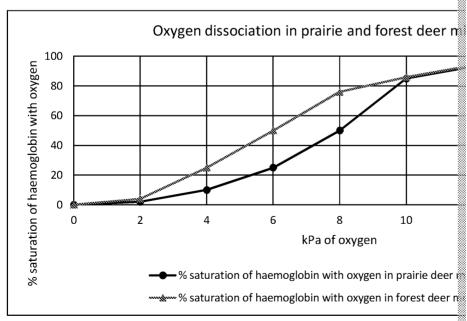
- e) Explain why it is more appropriate to calculate rate of oxygen uptake to mice and beetles.
- f) Analyse the data and use your biological knowledge to explain why large to meet their oxygen requirements.



7. Researchers are investigating the uptake of two new potential antibiotics for respiratory tract infections in children. To establish the mode of absorption, intestinal epithelial cells. They exposed the cells to increasing concentrations samples to measure intracellular concentrations after ten minutes. The resulting

- Use the data and your biological knowledge to identify the type of transtransport antibiotic A into the blood from the small intestine.
 - Explain your choice.
- b) From the current data it is not possible to establish whether antibiotic diffusion or facilitated diffusion.
 - Describe how the investigation could be extended to establish whether facilitated diffusion or simple diffusion.

When researchers extended their investigation to establish the transport mobilish the graph below.


c) Use the shape of the graph and your biological knowledge to describe Explain your reasoning.

- d) The cell membrane is described as a fluid mosaic model.
 - Draw the fluid mosaic model of the membrane and clearly label the coninvolved in the transport of antibiotic B.
- e) Explain why the transporter for antibiotic A does not transport antibiot
- A student wanted to investigate the effect of increasing temperature on the pigment from beetroot cells. She used a cork borer with a diameter of 11 m beetroot tissue. She then used a ruler to cut the cylinder into five small slicklength.
 - a) Use the formula $2(\pi r^2) + 2(\pi r) \times 1$ length to calculate the surface area of
 - b) Calculate the volume of each cylinder, using the formula πr^2 x length, to volume ratio.

The student put the five discs in a boiling tube and submerged them in water 80 °C water bath for ten minutes, then used a sieve to separate the water from colour of the water using a colorimeter, and recorded the absorbance in a tax at temperatures of 65 °C, 45 °C, room temperature, and 4 °C, using freshly contact the absorbance readings increased as the temperature was raised, and increases, the rate of diffusion of beetroot pigment from cells increases'.

- c) Describe the improvements that she would need to make to her experience conclusion valid.
- d) State why it is important to control the length and diameter of each dis
- The graph below shows oxygen dissociation for two sub-species of deer mice forest deer mouse and the low altitude prairie wood mouse. The forest-dw different phenotype, exhibiting longer tails, ears, skulls and hind feet than the counterparts.

- a) Which is the correct definition of the term 'oxygen affinity'.
 - How many oxygen molecules bind to haemoglobin
 - How readily oxygen molecules separate from haemoglobin
 - How readily oxygen molecules bind to haemoglobin
 - How easy it is to separate oxygen from haemoglobin

- b) Calculate the percentage increase in the oxygen affinity of forest deer deer mouse at 8 kPa of oxygen.
- Forest and prairie deer mice are not classified as different species and do not appear to interbreed.

Use your biological knowledge and the information provided to explain have a different phenotype and suggest why they do not interbreed.

The table below shows the saturation of haemoglobin with oxygen and the the tissues of mutant and normal forest deer mice during exposure to low on the tissues of mutant and normal forest deer mice during exposure to low on the tissues of mutant and normal forest deer mice during exposure to low on the tissues of mutant and normal forest deer mice during exposure to low on the tissues of mutant and normal forest deer mice during exposure to low on the tissues of mutant and normal forest deer mice during exposure to low on the tissues of mutant and normal forest deer mice during exposure to low on the tissues of mutant and normal forest deer mice during exposure to low on the tissues of mutant and normal forest deer mice during exposure to low on the tissues of mutant and normal forest deer mice during exposure to low on the tissues of mutant and normal forest deer mice during exposure to low on the tissues of mutant and normal forest deer mice during exposure to low on the tissues of mutant and normal forest deer mice during exposure to low on the tissue of the ti

Mouse type	kPA of oxygen in tissues at low oxygen kPA	Haemogl oxyge
'normal' forest mouse	14	
'mutant' forest mouse	8	

d) Compare and contrast haemoglobin saturation and oxygen concentration in the forest mice to explain why the mutants would have a disadvant

Preview of Questions Ends Here	
Preview of Questions Ends Here This is a limited inspection copy. Sample of questions ends here to avoid students pre questions before they are set. See contents page for details of the rest of the resonance.	
This is a limited inspection copy. Sample of questions ends here to avoid students pre	
This is a limited inspection copy. Sample of questions ends here to avoid students pre	

Practice Paper 2A

Question	Acceptable answer	Addi
number 1(a)	Row 3 ticked	
1(b)	Row 3 ticked	
-()	Lots of variation within a species;	Any two
4()	 Different species producing fertile hybrids; 	,
1(c)	Some interbreeding between neighbouring species	
	(ring species)	
	• Fish B uptake is 0.4 ppm at 0.2 mm from the start of	Clear working (
	the gill, whereas fish A have taken up 2 ppm	required for ea
2(a)	• (0.4/2.0) x 100 = only 20 % of the oxygen taken up in	Either % calcula
	 fish B compared to fish A at this point Or a difference of 2–0.4 = 1.6 ppm = 80% lower 	Littlei /0 calcule
	uptake in fish B at 0.2 mm	
	Fish B have counter current flow;	All four points r
	And so maintain oxygen diffusion for the whole	NOT JUST main
	length of the gill;	gradient <u>must l</u>
2(b)	 Whereas fish A has parallel flow; 	whole length o
	So diffusion will stop when equilibrium is reached	MUST be some
	half way across the gill (owtte)	MUST be comp discussed
	In atrial systole the atrioventricular valves are open	Correct box tick
3(a)(i)	because pressure in the atria is greater than in the	
	ventricles	
3(a)(ii)	Second row ticked	
	Measure stroke volume rather than ventricle	Any four
	volume; • Measure heart rate to allow calculation of cardiac	
	output;	
3(b)	Use subjects of the same age;	
, ,	Control variables such as smoking / drinking alcohol	
	/ caffeine intake; increase sample size	
	If generalising to 'athletes' complete study using	
	females also	NOT
	 The volume of blood in the ventricle goes back up during ventricular systole; 	NOT heart not v
3(c)	Suggesting backflow;	All tillee
	Suggesting backnow, Suggesting a leaky valve	
4/5)	A control group with no treatment for the course of the	
4(a)	study	
	Platelets activated (by exposure to arterial collagen);	Any four
	Activated platelets secrete thromboplastin;	
	Thromboplastin initiates <u>clotting cascade;</u> Double and the state of the	
4(b)	Prothrombin converted to thrombin; Thrombin converts soluble fibringers to insoluble.	
	 Thrombin converts soluble fibrinogen to insoluble fibrin; 	
	Fibrin forms a mesh holding the platelet plug in	
	place	
4(c)	Virus vector had to infect cells and undergo protein	
-1(C)	synthesis in host cell before clotting factor detectable	
	Virus vector genes continually expressed;	Any for 1 mark
4(d)	Protein synthesis using viral genes;	
	 Factor IX continually produced whereas single dose of purified factor 	
	or partition factor	

Question number	Acceptable answer	Ad
	Lack of genetic variation	Not just varia
	Leads to loss/absence of beneficial alleles causing	Not just decr
5(a)(i)	loss of genetic fitness	inbreeding d
5(4)(.)		correctly/ter
		susceptibility
5(a)(ii)	All the alleles	survival chan
	More forms of the same gene increase chance of	
5(b)	survival	
	• Population 1 = 35/50 = 0.7.	Indexes for a
	Population 2 = 16/35 = 0.46	correctly for
E/ \	Population 3 = 26/32 = 0.81;	All three own
5(c)	Population 3 has the highest heterozygosity index;	All three exp
	 Indicating that it has the highest genetic variation; So is more likely to be genetically fit / survive 	
	disease, or relevant example	
6(a)(i)	Reduce water loss	
	More stomata / stomata on the top of the leaf to allow	Any one
6(a)(ii)	rolling / stomata in pits to trap water	,
6(b)(i)	Row 1 ticked	
6(b)(ii)	Row 4 ticked	
6(c)	23/28	
	Potassium ions are transported into guard cells;	Role of potas
	Lowering the water potential;	conversion o
6(d)	Conversion of starch to malate lowers water	water poten
. ,	potential;	that water p
	Causing opening, so lower ion concentration results in loss appring	
	in less openingActive transport requires ATP;	All three
	From photosynthesis;	7
6(e)	So lower light intensities result in less ATP and fewer	
	stomata opening	
	Mutation causes adaptation;	All three
	To different niches / suitable example, such as food	
7(a)	source or habitat / sympatric speciation prevents	
, (u)	interbreeding;	
	Mutations accumulating eventually leads to	
	reproductive isolation	A 11 ±1=
	Bottle nose dolphins in open ocean interbreed more:	All three
7(b)	more;Larger gene pool / greater heterozygosity index;	
	More chance of an allele that promotes survival	
	30450+6+812=31268	Clear workin
7(c)(i)	• 207x 206 = 42642.	
. (-)(-)	• 42642/31268 =1.36	
	Diversity index in the shelf is 2.13 x greater than in	Any three ma
	abyss;	of difference
	likely to be greater diversity of other marine animals	
	in the shelf	Accept habit
7(c)(ii)	So greater diversity in dolphin species in the shelf	
, (0)(11)	because there is likely to be more types of food	NOT just diff
	available (owtte);	
	Common dolphin may have behavioural adaptations to outcompate ather species in the abuse.	
	to outcompete other species in the abyss	
	More <u>niches</u> in shelf region	

Question number	Acceptable answer	Add
8(a)	 An increase in external herbicide concentration of 120–140 mmol causes an increase in the internal concentration; Supporting <u>facilitated</u> diffusion because uptake occurs faster as concentration gradient increases 	
8(b)	 Active transport requires ATP; From respiration; Respiratory inhibitors stop respiration so active transport should stop / suitable graph annotated appropriately to illustrate understanding 	Graph must sh immediately as added
8(c)	 No evidence from this investigation that herbicides are specific; Repeat experiment using crop plants / animal models 	Accept discuss being specific active transpo
9(a)	row 4 ticked	
9(b)	 Air contains oxygen; Required for aerobic respiration; Which generates the ATP required for active transport; Without active transport fewer ions will enter the root cortex; So the water potential in the soil will not be reduced / less of a water potential gradient; Less osmosis and less water uptake 	Any six QWC* Level 0 no mar Levels 1–2 Some biologics understanding limited attemptoomments gere biological terming respiration Levels 3–4 Understanding demonstrated discussed to site Levels 5–6 Ideas presente using appropriation appropriation appropriation sustained discussed to site Levels 5–6 Ideas presente using appropriation appropriation sustained appropriation appropriation appropriation sustained appropriation sustained appropriation a
9(c)	 145-24 = 121 (121/145) x 100 = 83% 	
9(d)	 Initial increase of the dye movement by 2 mm min⁻¹; As increased potassium leads to greater stomata numbers opening; Due to more guard cells taking up potassium / having lower water potential; After 20mMol rate of dye movement decreases rapidly by 8mm min⁻¹/50% 	All four points

Preview of Ar	wers ends here to s	top students lool	
	wers ends here to s	top students lool	
tion copy. Sample of ansv	wers ends here to s	top students lool	
tion copy. Sample of ansv	wers ends here to s	top students lool	
tion copy. Sample of ansv	wers ends here to s	top students lool	
tion copy. Sample of ansv	wers ends here to s	top students lool	