

Multiple-Choice Practice Questions for AS / A Level Year 1 AQA Physics

Update v1.2, October 2024

 ${\bf zigzage ducation.co.uk}$

POD 6801

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

↑ Follow us on X (Twitter) @ZigZagScience

Contents

Thank You for Choosing ZigZag Education	ii
Teacher Feedback Opportunity	iii
Terms and Conditions of Use	iv
Teacher's Introduction	1
Student's Introduction	2
Section One: Multiple-Choice Question Bank 1	3
Topic 1: Use of SI Units and their Prefixes	3
Topic 2: Particles and Radiation	7
Topic 3: Waves	12
Topic 4: Mechanics and Materials	17
Topic 5: Electricity	24
Answers to Multiple-Choice Question Bank 1	30
Topic 1: Use of SI Units and their Prefixes	30
Topic 2: Particles and Radiation	40
Topic 3: Waves	51
Topic 4: Mechanics and Materials	59
Topic 5: Electricity	70
Section Two: Multiple-Choice Question Bank 2	79
Topic 1: Use of SI Units and their Prefixes	79
Topic 2: Particles and Radiation	83
Topic 3: Waves	88
Topic 4: Mechanics and Materials	93
Topic 5: Electricity	99
Answers to Multiple-Choice Ouestion Bank 2	105

Teacher's Introduction

For the AS and A Level Year 1 Physics course, the AQA exam board includes strong emphasis on multiple-choice questioning which is assessed in Section C of Paper 2. The assessment marks awarded for the multiple-choice section are 30 marks out of an available 70 marks for the whole of Paper 2.

Physics students sometimes find the multiple-choice questions testing, the format of the questions often challenges how complete the students' understanding is of the course and requires quick and accurate problem solving to complete all the questions in the time given. This multiple-choice bank resource has been designed with the intention of providing students with the opportunity to review their multiple-choice skills and to practise and familiarise themselves with the questioning format with an extensive spread of multiple-choice questions from sections 1 to 5 of the AS and Year 1 A Level courses.

The resource is split into two sections:

Section One: Multiple-choice Question Bank 1

This section includes 100 multiple-choice questions that span each topic making up the AS and Year 1 A Level course. The questions mimic the exam style of the AQA exam board and reflect the depth, difficulty and format of the questions the student will face in their upcoming exam.

Remember!

Always check the exam board website for new information, including changes to the specification and sample assessment material.

A mark scheme is provided at the end of the resource, which includes the answers along with worked solutions. The step-by-step solutions, and additional commentary to accompany them, give students an opportunity to identify the areas that still need improvement, and also to see where any mistakes were made and correct themselves for next time.

Section Two: Multiple-choice Question Bank 2

This section includes another 100 multiple-choice questions that similarly span each topic that makes up the AS and Year 1 A Level course. The questions deliberately mimic those presented to the student in Section 1; this has been done so that, after working through the worked solutions of Section 1, students can complete another set of questions and directly compare their attempts. The format allows students to correct their mistakes from Section 1, identify areas where they have improved their understanding and highlight areas that still require further work.

A mark scheme for Section 2 is also provided at the end of the resource. The mark scheme does not include worked solutions.

This is followed by:

- The Mark Scheme for Multiple-choice Question Bank 1 which provides a mark scheme with step-by-step solutions and additional accompanying commentary that gives students an explanation for the given solution.
- The Mark Scheme for Multiple-choice Question Bank 2 which provides the answer to each question but does not provide step-by-step solutions.

August 2016

Update v1.1, 12 September 2017

• p. 21, q. 14 and p. 95, q. 9 – ms⁻¹ corrected to ms⁻²

Update v1.2, 30 October 2024

- Wording of questions improved for p. 7 q. 4, p. 16 q. 18, p. 85 q. 13, p. 93 q. 3 and p. 97 q. 15
- Answers corrected for pp. 57–58 q. 18, pp. 76–77 q. 14, p. 93 q. 3 and p. 103 q. 14

Free Updates!

Register your email address to receive any future free updates* made to this resource or other Physics resources your school has purchased, and details of any promotions for your subject.

 resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

Go to zzed.uk/freeupdates

Student's Introduction

Aim:

The pack is designed to help you practise your multiple-choice questions all solutions, allow you to build effective strategies for completing these quest questions now make up 30 of 70 marks on AS and A per 1 Physics P pack aims to provide you with the tools to complete your upcoming the pack are provided by the pack are packed by the pack are packed by the packed by the

Structure:

The pack is comprime we sections. Each section contains 100 multiple—the structu 700 level of the questions you will see in your exam. The 100 cover all five pics that make up the AS and A Level Year 1 Physics course

- **Topic 1**: Use of SI Units and their Prefixes
- Topic 2: Particles and Radiation
- **Topic 3**: Waves
- **Topic 4**: Mechanics and Materials
- **Topic 5**: Electricity

After the questions there are two sections of answers. The answers to Sections and additional commentary that indicates where you where you indication on how the problem should have been approached. This will all mistakes and develop strategies on how to tackle future questions. The anaprovide any worked solutions.

How to use this pack:

- You should first complete the sound in Section 1.
- After you have company questions you can then proceed by self-against through solutions to Section 1, taking note of your mistakes and enwhere you went wrong, before continuing with Section 2.
- After completing Section 2 you can proceed by self-marking your solut section. Additionally you can compare your answers to those obtained whether you have improved your skills and identify areas that still need

NSPECTION COPY

Section One: Multiple-Choice Question

Topic 1: Use of SI Units and their Pre

- 1. Which of the following forms represents the quantity 5360 Ω ? MSPECTION COP
 - A 5.36 M Ω
 - $53.6 \,\mathrm{n}\Omega$
 - C 5.36 k Ω
- **2.** What are the SI base units for temperature?
 - A K
 - ٥F В
 - **C** °C
 - **D** °R
- **3.** Which of the following are the derived SI units for density (ρ), given
 - $g m^{-3}$ Α
 - kg cm⁻³

 - D kgm
- 4. What are the SI base units for time?
 - **A** Minutes
 - Seconds
 - Hours
 - **D** Milliseconds
- 5. Which of the following represents α A: standard form?
 - \mathbf{A} $0.2 \times 10^{3} \text{ A}$

 - C
 - D $0.2 \times 10^6 \text{ A}$

6. Which of the following statements is true?

- **A** Systematic errors cause repeated measurements to alter from their varying amounts.
- **B** A source of systematic error can be temperature changes in the exposurroundings.
- C Systematic errors can be more easily i engineer and eliminated from random errors.
- D A source of rank or can be uncalibrated apparatus.

7. Which of the following statements is true?

- **A** Precision is a term used to describe the relationship between a measits true value.
- **B** Precision and accuracy are both terms that indicate how close a meato its true value.
- C Accuracy is a term used to discuss the relationship between a set of measurements.
- **D** It is possible for a measurement to have both low accuracy and high
- **8.** A student obtains the values $I = 0.2 \pm 0.1$ A and $\frac{D}{2} = 2.3 \pm 0.2$ Ω in an

The voltage is found using V = IR . We also have voltage?

- **A** $0.46 \pm 58.7 \text{ V}$
- B 0.4^{2}
- C 0.4 Education 7 V
- **D** $0.46 \pm 0.19 \text{ V}$

9. Which of the following is a valid estimate for the mass of an average m

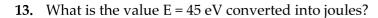
- **A** 120–130 kg
- **B** 40–60 kg
- **C** 70–80 kg
- **D** 140–150 kg

10. A measurement is repeatable if:

- A The experiment is redorday to be aligned experimenter using the sal apparatus and the salt is achieved.
- B Th $\frac{79}{100}$ rii and method can be replicated by the same or another ex
- C The experiment can be carried out using a different method and apparent result is achieved.
- **D** The experiment can be redone using the same method but different the same results are achieved.

NSPECTION COPY

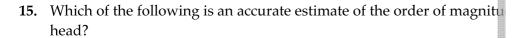
11. A student obtains the value $F = 460 \pm 1 \text{ N}$ for the force.


What is the percentage uncertainty of the value for force?

- **A** 0.002%
- В 460%
- C 0.2%
- **D** 1%



- m h⁻¹ В
- \mathbf{C} km h⁻¹
- m s⁻¹ D


- $7.2 \times 10^{-18} \text{ J}$
- $2.8 \times 10^{20} \text{ J}$ В
- $7.2 \times 10^{20} \text{ J}$
- $2.8 \times 10^{-18} \text{ J}$

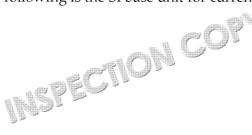
10100

- 200 000 J В
- 33 000 J
- 2 000 000 J

SECTION COR

- $\times 10^{-2} \text{ m}^{3}$
- $C \times 10^{-3} \text{ m}^3$

16. A student obtains the values $Q = 5.2 \pm 0.1$ C and $E = 50 \pm 5$ J in a circ


The emf of the cell used is the experiment is found using $\varepsilon = \frac{E}{O}$.

What is the emf?

- ASSECTION COPY $9.6 \pm 11.9 \text{ V}$
- $9.6 \pm 1.1 \text{ V}$
- $9.6 \pm 0.8 \text{ V}$

- Which of the following units are **not** equivalent to 1 joule (J)? **17.**
 - $\mathbf{A} \quad \text{kg m}^2 \, \text{s}^{-2}$
 - Nm В
 - Ws
 - D CV-1
- 18. Which of the following is the SI base unit for current?
 - Α Α
 - В mΑ
 - \mathbf{C} kΑ

- **19.** A space shuttle can travel 700 metres in 0.09 seconds when at maximum What is the maximum speed of a space shuttle in km s⁻¹?
 - **A** 780 km s⁻¹
 - 78 km s⁻¹
 - C 7.8 km s⁻¹
 - **D** 7800 km s⁻¹
- **20.** Which of the following as a state equivalent to J?
 - Α
 - В
 - C W
 - D CV

COPYRIGHT **PROTECTED**

SPECTION COP

Topic 2: Particles and Radiation

- 1. Which of the following statements is true?
 - A The mass of an electron is greater than the mass of a proton and the
 - B The charge of an electron and a proton are an ind opposite.
 - C The charge of a neutron is equal to the starge of a proton.
 - D The mass of an decision less than the mass of a proton but greater
- 2. How m disconnections are there in lithium-7 ($\frac{7}{3}$ Li)?
 - **A** 7
 - **B** 10
 - **C** 3
 - **D** 4
- 3. β^- decay can be represented by the following equation:

$${}_{6}^{14}C \rightarrow {}_{7}^{14}N + {}_{-1}^{0}e + Y$$

Which of the following are the correct missing value for **X** and **Y**?

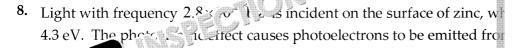
- **A** $X = 7; Y = v_a$
- B X = 7; Y = v
- C X = 709
- **D** X = 8; $Y = \overline{v_e}$
- **4.** The antiparticles of the proton and electron and their charges are prov

	Proton	
Antiparticle	antiproton	
Charge of Antiparticle	Y	

MON COR

Which of the following are the correct missing values for **X** and **Y**?

- **A** X = antielectron; Y = -e
- **B** X = positron; Y = +e
- **C** X = antielectron
- D $X = I_{0.00}^9$ on Y = -e



- **A** 1.4×10^{-19} J
- **B** 3.2×10^{47} J
- C $3.2 \times 10^{-48} \,\mathrm{J}$
- **D** 3.4×10^{-5} J

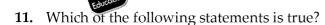
- A Weak
- B Strueducation
- **C** Radioactive
- **D** Electromagnetic
- 7. Which of the following statements is **not** true?
 - **A** *Down* and *up* are both names of quarks.
 - **B** Mesons and baryons are both hadrons.
 - C Baryons are made up of three quarks and mesons are made up of tw
 - **D** Strange particles are quarks and are produce': ough strong inter-

Calcula the maximum kinetic energy of the photoelectrons emitted from

- **A** 1.2×10^{-18} J
- B 4.3 J
- C $2.5 \times 10^{-18} \text{ J}$
- **D** 4.3 J

9. An electron de-excites from an excited energy state E = -0.90 eV to a lower

What is the frequency of the photon emitted for electron transitions


- **A** $9.10 \times 10^{32} \text{ Hz}$
- **B** 1.45×10^{14} Hz
- C 5.79
- D 2.8 5 Jucotion 18 Hz

INSPECTION COPY

10. Which of the following statements is **not** true?

- **A** All quarks have a charge of $+\frac{2}{3}$ and all antiquarks have a charge
- **B** All quarks have a baryon number of $+\frac{1}{3}$
- C Baryon number is a conserved count for
- **D** All antiquarks $\frac{1}{3}$ you number of $-\frac{1}{3}$

- **A** Isotopes are nuclei of the same element with the same nucleon nur atomic number.
- **B** Isotopes are nuclei of the same element with the same number of number of neutrons.
- C ⁴Li and ⁴He are examples of isotopes of each other.
- **D** For nuclei of the same element to be referred to as isotopes they nucleon number and atomic number.
- **12.** A high-energy gamma ray has energy 100 G

What is the wavelength of 100 GeV?

- **A** 1.99×10^{-36} m
- B 1. Education -8 m
- C $1.24 \times 10^{-17} \text{ m}$
- **D** 7.24×10^{33} m

13. Which of the following statements is true?

- **A** The threshold frequency is the maximum frequency of light incide cause electron emission from the surface.
- B The rate of emission of electrons from the surface of a metal can be the metal to incident light for a longer time.
- C Light of frequency below the a cold frequency can increase the emitted per second in features of the light is increased.
- D The property cential causes the maximum kinetic energy of an ere (2000) zero.

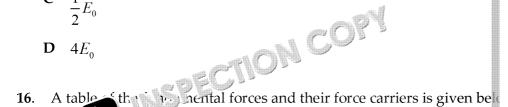
NSPECTION COPY

14. The muon decay can be represented by the following decay equation:

$$\mu^- \rightarrow X + \overline{v_e} + Y$$

What are the missing values for **X** and **Y**?

- **A** $X = e^+; Y = v_u$



What is the minimum energy of each photon produced during annihil

TECTION COPY

Note: E_0 is the rest energy of the electron.

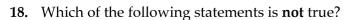
- E_{0}
- В $2E_0$
- $\mathbf{D} = 4E_0$

Fundamental force	Force carri
Electromagnetic force	X
Y	W boson
Z	pion

What are the missing values for X, Y and Z?

- A X = kaon; Y = Strong nuclear force; Z = Weak nuclear force
- **X** = photon; **Y** = Weak nuclear force; **Z** = Strong nuclear force
- X = kaon; Y = Weak nuclear force; $Z = C_1$ iv
- X = photon; Y = Gravity (t) g-nuclear force

NSPECTION COP



The decay of the neutron is represented by the decay equation:

$$n \to X + Y + \overline{v_e}$$

What are the missing values for **X** and **Y**?

- **A** $X = p; Y = e^+$
- ISPECTION GOP! B $X = \overline{v_{ii}}$; $Y = e^{-x}$
- D

- Electrons can cause ionisation when they collide with gas in a fluo
- В Alpha, beta and gamma radiation cause ionisation when they colli
- \mathbf{C} An ion is produced from adding or removing an electron from an
- D An ion is a charged atom with the same number of electrons and

19. Which of the following statements is **not** true?

- A Strong nuclear force is the force that holds r . . together in stable
- Strong nuclear force compensation of the electromagnetic repulsion in the nucleus.
- C Strong nucleon can a different effect between a proton and a two protons.
- **D** The range of the strong nuclear force is 3–4 fm.

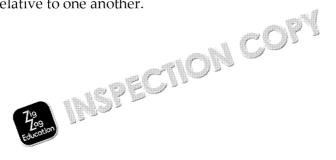
20. A photon has energy 1.8×10^{-19} J.

What will the wavelength of the photon be with this energy?

- $2.5 \times 10^{60} \text{ m}$
- $8.2 \times 10^{22} \text{ m}$ В
- 1.1×10^{-6} m
- $1.2 \times 10^{-23} \text{ m}$

11393011 2081

SPECTON COP

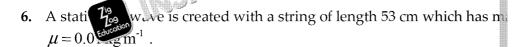


Topic 3: Waves

- 1. Which of the following statements is true?
 - **A** Phase difference can be measured in radians but not in degrees.
 - B Amplitude of a wave is the distance from some o its corresponding
 - C If the frequency of a wave is i a seperiod of the wave will a
 - D The wavelength is the distance of one complete cycle.
- 2. Which following is **not** an example of a transverse wave?
 - A Sound
 - **B** Electromagnetic
 - **C** Wave on a string
 - **D** Light
- 3. A transverse wave is travelling with a frequency of f = 5.6 Hz and has What is the wave speed of the wave?
 - $A = 4.5 \,\mathrm{m \, s^{-1}}$
 - $B = 0.04 \,\mathrm{m\,s^{-1}}$
 - $\mathbf{C} = 7 \,\mathrm{m\,s^{-1}}$
 - D 0.(79
- **4.** Which of the following statements is **not** true?
 - A If a wave is plane-polarised then it is only oscillating in one direction

1835CHON COP

- **B** Plane of polarisation for an electromagnetic wave is the plane in whoscillates.
- C To plane-polarise light you need two polarising filters at right angle
- **D** The intensity of light passing through polarising filters can be altererelative to one another.



The length of the string is 1.2 m.

What is the wavelength of the first harmonic?

- **A** 0.6 m
- **B** 2.4 m
- **C** 1.2 m
- **D** 4.8 m

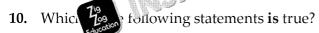
CION COP!

The string is fixed between two points creating tension of 0.2 N in the s What is the harmonic frequency?

- **A** 18.8 Hz
- **B** 4.2 Hz
- **C** 0.04 Hz
- **D** 0.2 Hz
- 7. Which of the following statements is **not** true? (i is the angle of incidence and r is the angle refraction.)
 - A The refractive index of ast because is the ratio of the speed of light the speed of light 2 substance.
 - B The Theoretic index of a substance is the ratio of $\sin i$ to $\sin r$.
 - **C** If the angle of incidence was increased it would increase the refraction substance.
 - **D** The refractive index ratio can also be referred to as Snell's law.
- 8. The refractive index of air is approximately 1 and the refractive index of Light travels from air into a diamond at an angle of incidence of 37.0°. What is the angle of refraction of the light ray in the diamond?

11395CTON COP

- **A** 53.0°
- **B** 37.0°
- **C** 14.5°
- D 75.579


of 3

NSPECTION COPY

9. Which of the following statements is **not** true?

- **A** If i > critical angle, then total internal reflection will always occur.
- **B** If i = critical angle and the incident substance has a larger refractive $r = 90^{\circ}$.
- C If i < critical angle and the incident substance by a larger refractive there will be partial reflection.
- succance has a larger refractive **D** If i = critical angle and the incidentsthere will be partial - f ecti n

- A Core cladding surrounding the core of an optical fibre is made of greater refractive index than the core.
- A narrow core in an optical fibre prevents modal dispersion.
- C Modal dispersion refers to pulse dispersion caused by using white monochromatic light.
- **D** Material dispersion refers to lengthening of a light pulse due to the different speeds down the optical fibre.
- 11. A monochromatic light source is diffracted through a diffraction grating $d = 3.07 \, \mu \text{m}$.

The 4th order beam is observed at an algebra from the zero order b What is the wavelength ang. t seed in this experiment?

- В
- 0.66 m
- **D** 1.50 m
- 12. Young's double slit experiment is used to create an interference pattern The experiment uses light with wavelength $\lambda = 720 \text{ nm}$.

The separation between the fringes on the screen is 20 cm and the slit STECTION COP What is the slit spacing s?

- $7.9 \times 10^{-6} \text{ m}$
- В $7.9 \times 10^{-8} \text{ m}$
- C
- D

NSPECTION COP

13. Which of the following statements is **not** true?

- **A** Bright fringes are formed due to interference of light rays that arrivanother.
- **B** Dark fringes are formed due to interference of light rays that arrive other.
- C If the slit spacing decreased, the fring sectation of the interference increase.
- D The two slits 1 d 2 s double-slit experiment act as coherent sou
- **14.** Which the following statements is true?
 - **A** Reflection refers to the change in a wave's speed and wavelength boundary.
 - **B** Refraction is the effect of the angle of incidence being equal to ang surface of the boundary.
 - C Diffraction arises when waves spread round an obstacle or through
 - **D** The shorter the wavelength of a wave, the more the waves will dif
- **15.** The distance between two points A and B on a transverse wave is 42 of The wavelength of the transverse wave is 2 (6).

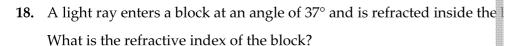
What is the phase difference: 1 (a) between A and B?

- **A** 0.44
- B 0.. Zig
- **C** 27
- **D** 2.7

16. Which of the following statements is **not** true?

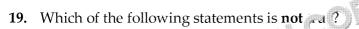
- **A** The frequency of a wave is the number of cycles of oscillation per
- **B** The displacement is half the distance from a crest to the correspond
- C The frequency of a wave can be defined as the number of complete per second.
- D The period is the time for one was a fixed point.

INSPECTION COPY



17. A stationary wave is created in a string fixed at either end.

The frequency of the first harmonic is $f_1 = \frac{c}{2L}$.


What is the frequency of the second harmonic?

- $\mathbf{A} = 2f_1$
- В f_1

MSFECTION CORY

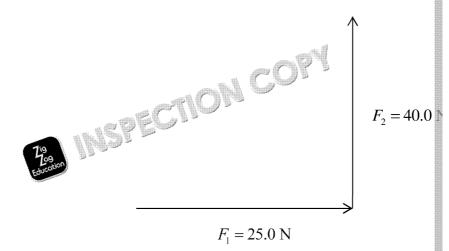
- **A** 0.65
- В 1.5
- 1.3 \mathbf{C}
- **D** 0.76

- A Light from a filament large in Colorised of a range of wavelengths
- Vapour larres, die light with one predominant colour.
- ht has light that is highly monochromatic.
- D Laser beam light can permanently damage your retina if looked at the light has first been reflected.

20. The period of a wave on a string is 1 minute.

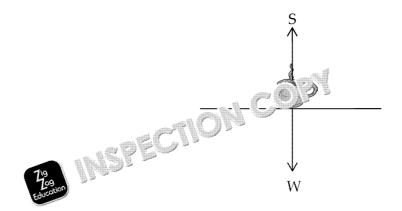
What is the frequency of the wave?

- **A** 1 Hz
- 0.02 Hz
- 60 Hz
- 0.01 Hz



Topic 4: Mechanics and Materials

- 1. Which of the following quantities is **not** a scalar?
 - A Mass
 - Energy В
 - Displacement
 - **D** Speed
- 2. Which ofollowing statements is **not** true?
 - **A** A scalar is defined by both magnitude and direction.
 - Force and weight are both vectors.
 - A vector is defined by both magnitude and direction.
 - Acceleration is a vector and time is a scalar.
- Two forces act at right angles to each other: 3.



ECHON COPY

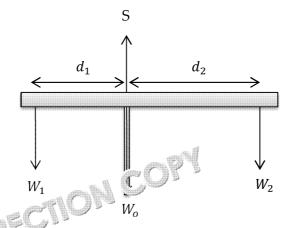
Which of the following rows gives the correct magnitude and direction

A		
В	7	
С		
D		
719 709 Education		

4. A coffee mug is at rest on the surface of a table.

Which of the following statements is true for the forces S and W?

- **A** $S \leq W$
- $\mathbf{B} \quad S > W$
- \mathbf{C} S < W
- $\mathbf{D} \quad S = W$
- 5. An engineer turns a spanner with a force of 140 N. The engineer's hand is 390 mm from the proof. What is the moment of the contact the pivot?
 - A 0.0054 Nr
 - B 54.
 - C 359.0 Nm
 - **D** 3.59 Nm


NSPECTON COPY

The principle of moments states that for a body in equilibrium:

- **A** The sum of the clockwise moments is equal to half the sum of the amoments.
- B The sum of the clockwise moments is equal to who ce the sum of the moments
- C The sum of the clockwizer (c). At is equal to the sum of the anticle
- D The composition of the composi
- 7. Supports are being built during the construction of a house.

The supports are in equilibrium:

Which systatements is true for the supports to be in equil

A
$$S = Education W_2 - W_C$$

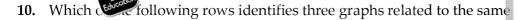
B
$$W_1d_1 = -W_2d_2$$

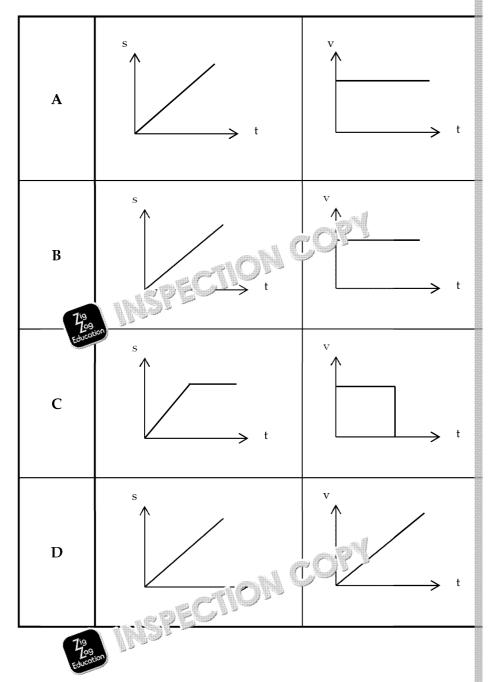
$$\mathbf{C} \quad W_1 = \frac{W_2 d_1}{d_2}$$

$$\mathbf{D} \quad d_1 = \frac{W_2 d_2}{W_1}$$

8. Which of the following statements is **not** true?

- A The displacement of an object can be determed by the area under
- B The acceleration of an cipe to oe determined using the gradient graph.
- C Th. 7.9 ity of an object can be determined using the gradient of a grateduction
- D The acceleration of an object can be determined by the area under


INSPECTION COPY


The cyclist travels for 5 minutes and reaches 4.9 m s^{-1} .

What is the acceleration of the cyclist?

- $A = 0.02 \, \text{m s}^{-1}$
- $B = 0.56 \,\mathrm{ms}^{-1}$
- $C = 0.01 \, \text{m s}^{-1}$
- $D = 1.4 \,\mathrm{m \, s^{-1}}$

361011608

11. A ball is projected horizontally off a cliff.

What will the height of the ball be after 2.20 seconds? Assume air res

- **A** 10.8 m
- -23.7 m
- –10.8 m
- **D** 23.7 m

following statements is **not** true?

The acceleration of a projectile is always equal to g if air resistance

ECTION COPY

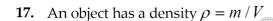
- The horizontal motion and vertical motion of a projectile are deper
- The horizontal velocity of a projectile is constant if air resistance is C
- D A ball projected horizontally and a ball dropped vertically will rea same time if air resistance is negligible.

13. Which of the following statements is **not** true?

- A Newton's first law states that if no external force is applied to an o rest or continue travelling at a constant velocity
- An object will experience acceleration of the peed remains constant changes.
- If a student py ふり with a force of 150 N, the wall will push techie opposite direction.
- ned force is proportional to the velocity of the object.
- 14. A skydiver opens her parachute in the last stage of her jump and creat The skydiver has mass m = 65 kg and accelerates towards the ground What is the value for the drag force created by the parachute?
 - **A** 39 N
 - В 640 N
 - \mathbf{C} 600 N
 - D -600 N

15. A footballer kicks a 430 g football.

The football was travelling at 21 ms⁻¹ before being kicked. After being footballer's foot at 29 ms⁻¹.

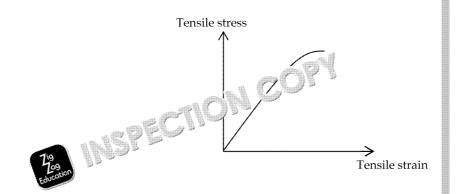

What is the value for the impulse of the force on the football? 11373CON COP

- 3.4 Ns Α
- 3.4×10^3 Ns В

What will the kinetic energy of the ball be 2.00 m above the ground?

- **A** 39.2 J
- 9.80 J
- 58.8 J
- **D** 49.0 J

What is the volume of \sim one \sim with a mass of 2m and with the


- \mathbf{C}
- D

18. The graph below shows how the tensile stress of a material varies with

How can you determine the Young modulus from the graph?

- The y-intercept of the graph
- В The area under the graph
- The gradient of the straight line section of the graph
- Any x-coordinate on the curve
- **19.** A force of 56.0 N is applied to an elastic band in order to stretch it by What is the value of the energy stored in the a cand? 118950101
 - $0.001 \, \mathrm{J}$
 - В $0.18 \, J$

 - **D** 11.8 J
- The period of a wave on a string is 3 minutes.

What is the frequency of the wave?

- **A** 0.3 Hz
- $0.003 \, \text{Hz}$
- 180 Hz
- **D** 0.006 Hz

Topic 5: Electricity

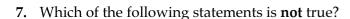
- **1.** Which of the following statements **is** true?
 - **A** Electric current is the rate of flow of charge.
 - Potential difference is the work done per unit in e.
 - The resistance of an electrical is the ratio of voltage to charge
 - Charge is the rational tance to voltage.
- asures 5.0 A of current flowing through an electrical circu 2. A stude What is the charge flow in the circuit?
 - **A** 100 C
 - 2500 C В
 - **C** 0.01 C
 - **D** 5.0 C
- The charge flow through a cell is measured to be 24 C.

How many electrons have passed through the cell? 1333 CON CON

- **A** 1.5×10^{20}
- 6.7×10^{-21}
- C 2.6×10^{31}
- **4.** A filament bulb is connected in series with a cell. The bulb does 40.0 J flows through it.

What is the potential difference across the bulb?

- **A** 12 V
- 120 V
- 0.01 V
- **D** 13.3 V
- 5. Which of the following statements is true?
 - A A filament bulk is a pumple of an ohmic conductor.
 - w lates that the resistance of a component is equal to the across the component and the current flowing through it
 - C Ohm's law states that the potential difference across a conductor is current through it, if the temperature of the conductor remains con-
 - **D** Ohmic conductors are components that obey Ohm's law.



6. A wire of cross-sectional area *A* and length *L* and resistance *R*.

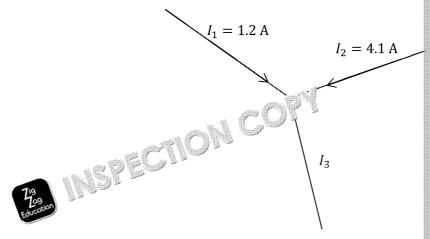
A second wire with a cross-sectional area of 4A and length 2L is found same resistance.

MSFECTION COPY What is the resistivity of the second wire?

- 2ρ
- В
- 4ρ D

- **A** When a device is displaying superconductivity it has no resistance.
- **B** Superconductors can be used to make high-power electromagnets strong magnetic fields.
- C A superconductor is a device made of a material that has zero resist
- **D** Superconductivity is the property of a material indicating that any above its critical temperature will result in the terial having zero
- **8.** Three 16.5 Ω resistors are Ω

What is the total r of the parallel circuit?


- 5.5Ω
- $0.18\,\Omega$
- **D** $16.5\,\Omega$

Zo dicator

9. A junction in an electrical circuit is demonstrated below:

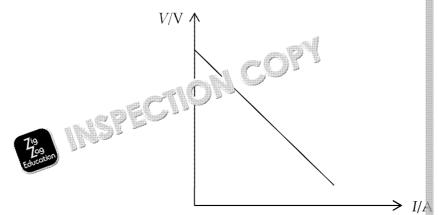
Which of the following rows correctly identifies the direction and value

Α	
В	
С	
D	

10. A kettle is fitted via an ang element to heat the water inside it.

The 179 ϵ ment has a resistance of 150 Ω . When the kettle is constant 1.50 Accordance arrent flows through it.

What is the rate of heat transfer to the water in the kettle?


- **A** 2.00 mW
- **B** 225 W
- C 338 W
- **D** 67.0 W

INSPECTION COPY

11. A student completes an experiment to determine the internal resistance. The student plots a graph of potential difference across the cell against the cell:

Which of the following rows correctly identifies how to determine the of the cell from the graph?

	Internal resistance	
A	gradient	
В	y-intercept	
С	1 gradient	
D	: tercept	

12. An 8.779 es. Connected in series with a cell. The e.m.f. of the cresista $110 \text{ m}\Omega$.


What is the terminal potential difference of the cell?

- **A** 5.44 V
- **B** 12.0 V
- **C** 0.800 V
- **D** 11.8 V
- **13.** Which of the following statements is **not** true?
 - A When the temperature of a thermistor of reases, the resistance of t
 - **B** When the intensity of it is incident on an LDR increases, the decreases.
 - C W 75 he mensity of the light incident on an LDR decreases, the pacternal LDR decreases.
 - **D** When the temperature of a thermistor increases, the potential differentiation thermistor decreases.

INSPECTION COPY

14. A potential divider is set up as below:

What is the point of incrence across R_1 ?

B 2.50 V

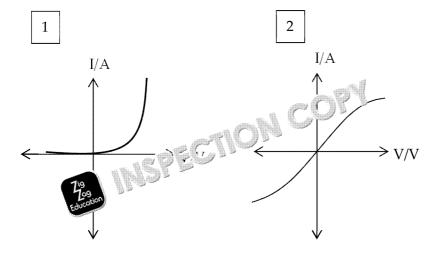
C 2.12 V

D 3.01 V

15. Which of the following statements is **not** true?

- **A** The potential difference across each component connected in serie terminal potential difference across the cell of the circuit.
- **B** The total resistance in a series circuit is the sum of all the resistance connected in series.
- C The current in a series circuit same at all points in the circuit
- D The total resistors in a parallel circuit is equal to

16. A 2.2 k Ω resistor is connected in series with a cell. The potential difference What is the rate of energy transfer through the resistor?


- **A** 14 W
- **B** 0.01 W
- C 2.50 W
- **D** $2.50 \times 10^3 \text{ W}$

17. Which of the following statements is ne' true?

- A In an insulator each elector is a nature and fixed to the
- B Electron the number of the n
- C In a semiconductor the number of charge carriers increases with an temperature.
- **D** Most electrons within a metallic conductor are connected to atoms a delocalised.

18. A student plots graphs of current against potential difference for three

Which of the following rows correctly identifies the electrical componer above?

	1	2
A	Thermistor	Diode
В	Lamp	Thermistor
С	Diode	Lamp
D	Thermistor	Lamp

- 19. Which of the following statements i vol the:
 - A A metal has a positive perature coefficient as its resistance increase.
 - B Ti decreases stance of a thermistor decreases non-linearly with increase
 - C Semiconductors have a negative temperature coefficient.
 - **D** The charge carriers in a conductor travel through the conductor w potential difference is applied across the conductor.
- **20.** The power output of a filament lamp is 0.15 kW. The current flowing

MSPECTION COR

What is the potential difference across the lamp when there is current

- **A** 38 V
- **B** 0.04 V
- C 600 V
- **D** 0.6 V

Answers to Multiple-Choice Question

Topic 1: Use of SI Units and their Pre

			Question 1
A	ж	$M = 'mega' = ×10^6$ $5.36 × 10^6 Ω$ = 5360000 Ω	Mistak is unity we used $\times 10^3$ as the order of magnitude \times
В	ж	$\begin{array}{l} 7_{99} & \text{va.to'} = \times 10^{-9} \\ 5.36 \times 10^{-9} & \Omega \\ = 0.000000000536 & \Omega \end{array}$	Mistake: You have used $\times 10^3$ as the ordinstead of its true order of magnitude \times
С	√	$\mathbf{k} = '\mathbf{kilo}' = \times 10^{3}$ $5.36 \times 10^{3} \Omega$ $= 5360 \Omega$	
D	ж	c = 'centi' = $\times 10^{-2}$ $5.36 \times 10^{-2} \Omega$ = 0.0536Ω	Mistake: You have used $\times 10^3$ as the ordinstead of its true order of magnitude \times
			Ques 2
Α	✓	Kelvin is the SI base unit for	ton vira
В	*	Fahrenheit can be 3 d at a	and for temperature but it is not the SI ba
С	*	Cinus γ Lea as a unit	for temperature but it is not the SI base u
D	×	Education ne can be used as a uni	t for temperature but it is not the SI base
			Question 3
A	×	$\rho = \frac{m}{V}$ Units: $m = \mathbf{g} \text{ and } V = \mathbf{m}^3$ $\rho = \frac{\mathbf{g}}{\mathbf{m}^3}$	You have correctly determined the unit Mistake: You have not determined the You have not converted mass into its SI Both mass and volume quantities need determine the derived base units for determine the derived base units
В	×	$\rho = \mathbf{g} \mathbf{m}^{-3}$ $\rho = \frac{m}{V}$ Units: $m = k \varepsilon \mathbf{c}$ \mathbf{cm}^{3} $\rho = k \mathbf{g} \mathbf{cm}^{-3}$ $\rho = k \mathbf{g} \mathbf{cm}^{-3}$	You have on any etermined the unit M's k you have not determined the you have not converted volume into its. Both mass and volume quantities need determine the derived base units for definitions.

NSPEC ON COPY

	"
Min	
)
	79

С	×	$\rho = \frac{m}{V}$ Units: $m = \mathbf{g} \text{ and } V = \mathbf{cm}^3$ $\rho = \frac{\mathbf{g}}{\mathbf{cm}^3}$ $\rho = \mathbf{g} \mathbf{cm}^{-3}$ You have correctly determined the units for density. Mistake: You have not determined the correctly determined the correctly determined the correctly determined the units for density. Mistake: You have not determined the units for density. You have correctly determined the units for density. Solution and ginto kg. Both mass and volume quantities need of determine the derived base units for density.
D	V	$\rho = \frac{m}{V}$ Units: $m = \text{kg and } V$ $V = \text{kg}$ $\rho = \text{kg m}^{-3}$
		Question 4
A	×	Minutes are units that can be used for time, but they are not the SI ba
В	~	Seconds are the SI base unit for time.
С	×	Hours are units that can be used for time, but they are not the SI base

С	×	Hours are units that can be used for time, but they are not the SI base		
D	×	Milliseconds are units that can be used for time, but are not the SI ba		
			Question 5	
Α	×	$k = 'kilo' = \times 10^3$ 0.2×10 ³ A= 0.2 kA	Mistake: You have used $\times 10^{-3}$ as the orinstead of italian derivatives of the original or	
В	×	$\mu = \text{'micro'} = \times 10^{-6}$ $0.2 \times 10^{-6} \text{ A}$	N. ke: You have used $\times 10^{-3}$ as the of instead of its true order of magnitude \times	
С	✓	$709 \text{ min} = \times 10^{-3}$ $0.2 \times 10^{-3} \text{ A} = 0.2 \text{ mA}$		
D	*	M= 'Mega' = $\times 10^6$ 0.2×10 ⁶ A= 0.2 MA	Mistake: You have used $\times 10^{-3}$ as the order of magnitude \times	
			Question 6	
Α	×	Systematic errors do cause re the same amount.	epeated measurements to alter from the	
В	×	Temperature changes in the experiment's surroundings are a source that cannot be foreseen.		
С	√	True. Systematic errors can be foresee that usually to do with inaccurat uncalibrated apparatus. The solot of experimental equipment where external factors.		
D	×		cause repeated measurements to deviate herefore a source of systematic error.	

1		
1		,
3		
á		
3		
3		
		/

1		

COP	YRIC	GHT
PRO1	[EC]	ΓED

	- y.	
	/iq	
	/aq	
-	, 	
E	ducation	N,
7		

		Question 7	
Α	×	Accuracy is a term used to describe the relationship bet	ween a meas
В	×	Only accuracy is a term used to describe how close a m	easured valu
С	×	Precision is a term used to discuss the relationship between	ween a set of
D	✓	A measurement can be described as being a at rom proximity to the rest of the repeared negativements (hi	
A	×	Question 8 V IK The state of	Mistake: Y percentage uncertaint The equati $\%$ uncertaint Therefore percentage uncertainty $\Delta a = \frac{\%}{}$ u
В	ж	$V = IR$ $V = 0.2 \times 2.3 = 0.46$ % uncertainty in $I = \frac{0.1}{0.2} \times 100 = 50\%$ % uncertainty in $R = \frac{0.2}{2.3} \times 100 = 8.7\%$ % onc. $r = (50 - 8.7) = 41.3\%$	Mistake: Youncertaint should have another. The rule for quantities $If C = AB = C = (A \times B)$ Additional from perceasesolute under the should be absolute of the should be a

The equation

% uncerta

Therefore to percentage u uncertainty $\Delta a = \frac{\% \text{ unit}}{}$

where $V = 0.2 \times 100$ is $V = 0.2 \times 100 = 50\%$ in $V = 0.2 \times 100 = 50\%$ in $V = 0.2 \times 100 = 8.7\%$ in $V = 0.2 \times 100 = 8.7\%$ in $V = 0.2 \times 100 = 8.7\%$			V = IR	
% uncertainty in $R = \frac{0.2}{2.3} \times 100 = 8.7\%$ % uncertainty in $V = (50 + 8.7) = 58.7\%$ absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ absolute uncertainty in $V = \left(\frac{58.7}{100} \times 0.46\right) = 0.27$ $V = 0.46 \pm 0.27 \text{ V}$ We also uncertainty in $V = \left(\frac{58.7}{100} \times 0.46\right) = 0.27$ We uncertainty in $V = \left(\frac{9.2}{2.3} \times 100\right) = 8.7\%$ which is a should have another. The rule for quantities a should have another. We uncertainty in $V = \left(\frac{9.2}{2.3} \times 100\right) = 8.7\%$ absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.3\%$ absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We also uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{41.3}{100} \times 0.46\right) = 0.19$ We absolute uncertainty in $V = \left(\frac{41.3}{100} \times 0.46\right) = 0.19$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We absolute uncertainty in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We also in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We also in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We also in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We also in $V = \left(\frac{9.2}{100} \times 100\right) = 1.9$ We also in $V = \left(\frac{9.2}{100} \times 100\right) =$			$V = 0.2 \times 2.3 = 0.46$	
% uncertainty in $V = (50 + 8.7) = 58.7\%$ absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ absolute uncertainty in $V = \left(\frac{58.7}{100} \times 0.46\right) = 0.27$ $V = 0.46 \pm 0.27 \text{ V}$ We IR $V = 0.2$ % uncertainty in $I = \frac{0.1}{0.2} \times 100 = 50\%$ % uncertainty in $V = \left(\frac{9.2}{2.3} \times 100 = 8.7\%\right)$ absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ absolute uncertainty in $V = \left(\frac{41.3}{100} \times 0.46\right) = 0.19$ $V = 0.46 \pm 0.19 \text{ V}$ Question 9 A * Too heavy for an average man B * Too light for an average man C * Correct D * * Too heavy for an average man			% uncertainty in $I = \frac{0.1}{0.2} \times 100 = 50\%$	
absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ absolute uncertainty in $V = \left(\frac{58.7}{100} \times 0.46\right) = 0.27$ $V = 0.46 \pm 0.27 \text{ V}$ Wincertainty in $I = \frac{0.1}{0.2} \times 100 = 50\%$ which is a solute uncertainty in $I = \frac{0.2}{2.3} \times 100 = 8.7\%$ absolute uncertainty in $I = \frac{0.2}{2.3} \times 100 = 8.7\%$ absolute uncertainty in $I = \frac{0.2}{2.3} \times 100 = 8.7\%$ absolute uncertainty in $I = \frac{0.2}{2.3} \times 100 = 8.7\%$ absolute uncertainty in $I = \frac{0.2}{2.3} \times 100 = 8.7\%$ absolute uncertainty in $I = \frac{0.2}{2.3} \times 100 = 8.7\%$ absolute uncertainty in $I = \frac{0.2}{2.3} \times 100 = 8.7\%$ absolute uncertainty in $I = \frac{0.2}{2.3} \times 100 = 8.7\%$ By the incertainty in $I = \frac{0.1}{0.2} \times 100 = 50\%$ A Too heavy for an average man B Too light for an average man B Too light for an average man C Too heavy for an average man B Too heavy for an average man B Too heavy for an average man				
absolute uncertainty in $V = \left(\frac{58.7}{100} \times 0.46\right) = 0.27$ $V = 0.46 \pm 0.27 \text{ V}$ $V = IR$ $V = 0.2$ $V = 0.46 \pm 0.19 \text{ V}$ $V = 0.46$	C		% uncertainty in $V = (50 + 8.7) = 58.7\%$	
$V = 0.46 \pm 0.27 \text{ V}$ $V = IR$ $V = 0.2$ $V = 0.46 \pm 0.19$ $V = 0.46 \pm 0.$			absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$	
W = IR V = 0.2 Certainty in $I = \frac{0.1}{0.2} \times 100 = 50\%$ % uncertainty in $R = \frac{0.2}{2.3} \times 100 = 8.7\%$ % uncertainty in $V = (50 - 8.7) = 41.3\%$ absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ absolute uncertainty in $V = \left(\frac{41.3}{100} \times 0.46\right) = 0.19$ $V = 0.46 \pm 0.19 \text{ V}$ Question 9 A * Too heavy for an average man B * Too light for an average man B * Too light for an average man C C Correct D * Ne S heavy for an average man			absolute uncertainty in $V = \left(\frac{58.7}{100} \times 0.46\right) = 0.27$	
with the content of			$V = 0.46 \pm 0.27 \text{ V}$	
should have another. Description in $I = \frac{0.1}{0.2} \times 100 = 50\%$ We uncertainty in $R = \frac{0.2}{2.3} \times 100 = 8.7\%$ We uncertainty in $V = (50 - 8.7) = 41.3\%$ absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ absolute uncertainty in $V = \left(\frac{41.3}{100} \times 0.46\right) = 0.19$ $V = 0.46 \pm 0.19 \text{ V}$ Question 9 A Too heavy for an average man B Too light for an average man B Too light for an average man C C Correct D The rule for quantities a If $C = AB$ $C = (A \pm a)$ $C = (A \times B)$			V = IR	Mistake: Y
we uncertainty in $I = \frac{0.1}{0.2} \times 100 = 50\%$ We uncertainty in $R = \frac{0.2}{2.3} \times 100 = 8.7\%$ We uncertainty in $V = (50 - 8.7) = 41.3\%$ absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right)$ The rule for quantities at $V = \left(\frac{A1.3}{100} \times V\right$			V=0.2	
% uncertainty in $R = \frac{0.2}{2.3} \times 100 = 8.7\%$ % uncertainty in $V = (50 - 8.7) = 41.3\%$ absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ absolute uncertainty in $V = \left(\frac{41.3}{100} \times 0.46\right) = 0.19$ $V = 0.46 \pm 0.19 \text{ V}$ Question 9 A * Too heavy for an average man B * Too light for an average man C Correct D * Too heavy for an average man			$\frac{700}{100}$	
% uncertainty in $R = \frac{3.2}{2.3} \times 100 = 8.7\%$ % uncertainty in $V = (50 - 8.7) = 41.3\%$ absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ absolute uncertainty in $V = \left(\frac{41.3}{100} \times 0.46\right) = 0.19$ $V = 0.46 \pm 0.19 \text{ V}$ Question 9 A * Too heavy for an average man B * Too light for an average man C * Correct D * Description 19 A * Too heavy for an average man A * Too light for an average man C * Correct D * Too heavy for an average man			certainty in $T = \frac{1}{0.2} \times 100 = 30\%$	0.210 0.1017
absolute uncertainty in $V = (50-8.7) = 41.3\%$ absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ absolute uncertainty in $V = \left(\frac{41.3}{100} \times 0.46\right) = 0.19$ $V = 0.46 \pm 0.19 \text{ V}$ Question 9 A * Too heavy for an average man B * Too light for an average man C Correct D * The heavy for an average man			% uncertainty in $R = \frac{0.2}{2.3} \times 100 = 8.7\%$	The rule for quantities as
absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$ $C = (A \pm a)$ $C = (A \times B)$ absolute uncertainty in $V = \left(\frac{41.3}{100} \times 0.46\right) = 0.19$ $V = 0.46 \pm 0.19 \text{ V}$ Question 9 A * Too heavy for an average man B * Too light for an average \(\text{1} - \text{1}\) o.e suited to an average boy C \(\text{Correct}\) D * \(\text{13}\) ne heavy for an average man		×	% uncertainty in $V = (50 - 8.7) = 41.3\%$	If $C = AB$
absolute uncertainty in $V = \left(\frac{41.3}{100} \times 0.46\right) = 0.19$ $V = 0.46 \pm 0.19 \text{ V}$ Question 9 A * Too heavy for an average man B * Too light for an average \(\text{V} = 1\) are suited to an average boy C \(\text{Correct}\) D * Too heavy for an average man			absolute uncertainty in $V = \left(\frac{\% \text{ uncertainty}}{100} \times V\right)$	$C = (A \pm a)$
Question 9 A * Too heavy for an average man B * Too light for an average \(\) \(\) \(\) \(\) Correct D * \(\) \(\) \(\) heavy for an average man				$C = (A \times B)$
A * Too heavy for an average man B * Too light for an average. — I have suited to an average boy C Correct D * Too heavy for an average man			$V = 0.46 \pm 0.19 \text{ V}$	
A * Too heavy for an average man B * Too light for an average. — I have suited to an average boy C Correct D * Too heavy for an average man			Question 9	
C Correct D * 19 ne heavy for an average man	A	х		
D * 73 ne heavy for an average man	В	ж	Too light for an average and I have suited to an average	ge boy
D * 73 ne heavy for an average man	C	/	Correct	-
Education	D	х		
			Education	

V = ID

COPYRIGHT PROTECTED

Reproducibility refers to property of an experiment whereby its methods.

The experiment has to be carried out using the same method and app

The experiment has to be carried out using the same method and app

same or another experimenter working independently.

achieved for the measurement to be said to be repeatable.

achieved for the measurement to be said to be repeatable.

Α

В

C

D

x

			Ques	stion 11
		$F = 460 \pm 1 \text{ N}$		Mistake: You have calcu
		naraantaga unaartain	$\frac{1}{1}$	instead of the percentage
Α	*	percentage uncertain	$-\frac{11}{460}$	You should have multip
		percentage uncertain	ty = 0.002 %	
				$\frac{2}{460}$ by 100 to obtain the
		$F = 460 \pm 1 \text{ N}$	ALONS TO	Mistake: You have inco
			460	uncertainty. You have d
	4	79 CEN & Acertain	$ty = \frac{460}{1}$	by its absolute uncertain
B	×	709 Education centage uncertain	_	divided the absolute un
	3	l and the state of	100 70	value (460).
				Additionally you should
				uncertainty by 100 to ob
		$F = 460 \pm 1 \text{ N}$		
			1	
percentage uncertainty = $\frac{1}{460} \times 100$ percentage uncertainty = 0.2 %			$ty = \frac{1}{460} \times 100$	
		$F = 460 \pm 1 \text{ N}$		Mistake: You have mist
D	×	uncertainty = 1		(± 1) to be the percentage
		percentage uncertainty = 1 %		
			and Se	stion 12
		d		ned the units for velocity.
		$v = \frac{a}{t}$	Su have determin	ned the druis for velocity.
	*	719 709	Mistake: You have	e not determined the deri
A		$d = \mathbf{km}; t = \mathbf{s}$	have not converted	d displacement into its SI
		1	Both distance and	time quantities need to b
		$v = \frac{\mathbf{km}}{\mathbf{s}}$		ived base units for veloci
		$v = \mathbf{km} \mathbf{s}^{-1}$		
\vdash			Vou have determine	and the unite for relacite
	×	$v = \frac{d}{t}$	Tou have determin	ned the units for velocity.
		Units:		e not determined the deri v
D		$d = \mathbf{m}; t = \mathbf{h}$	have not converted	d time into its SI base uni
B			Both distance and	time uantities need to be
		$v = \frac{\mathbf{m}}{\mathbf{h}}$		se units for velocity
1		1 11	(************************************	/J 2

 $v = m h^{-1}$

NSPECTON COPY

***************************************	/ //
)

С	×	$v = \frac{d}{t}$ Units: $d = \mathbf{km}; t = \mathbf{h}$	You have determined the units for velocity. Mistake: You have not determined the derinave not converted time into its SI base unity you have not converted displacement into i
		$v = \frac{\mathbf{km}}{\mathbf{h}}$ $v = \mathbf{km} \mathbf{h}^{-1}$	Both distance and time quantities need to b determine the derived base units for velocities
D	· ($v = \frac{d}{t}$ Units: $d = m; t = s$ $v = \frac{n}{t}$ $v = m s^{-1}$	
			Question 13
A	~	$E = 45 \text{ eV}$ $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$ $45 \times (1.6 \times 10^{-19})$ $= 7.2 \times 10^{-18} \text{ J}$	~
В	×	$E = 45 \text{ eV}$ $\frac{45}{1.6 \times 10^{-19}}$ $= 2.8 \times 10^{20} \text{ J}$	Mistake: You have not correctly converged You have divided by the value e = 1.6 multiplied.
C	*	$E = 45 \text{ eV}$ $45 \times 1.6 \times 3$ $7_{29}^{19} 2. 0 \text{J}$	N) take: You have used the wrong corconverting between electron volts and 1.6×10^{19} instead of 1.6×10^{-19} .
D	×	$\mathcal{L} = 45 \text{ eV}$ $\frac{45}{1.6 \times 10^{19}}$ $= 2.8 \times 10^{-18} \text{ J}$	Mistake: You have not correctly conve You have divided by the value e = 1.6 multiplied. Additionally, you have used the wrong converting between electron volts and 1.6 × 10 ¹⁹ instead of 1.6 × 10 ⁻¹⁹ .
			Question 14
Α	ж	E = 0.55 kWh $1 \text{ W} = 1 \text{ Js}^{-1}$ $k = \times 10^{3}$ 0.55×1000 = 550 J	You have correctly multiplied by 1000 Mistake: You have not converted from have multiplied by 1000 have multiplied by 1000

	,,,
	,,,,
	_

	**

7io
4 .9
Zag
Education

		I	-
В	ж	E = 0.55 kWh $1 \text{ W} = 1 \text{ Js}^{-1}$ $\mathbf{k} = \times 10^2$ 1 kWs = 100 J $1 \text{ hour} = 60 \times 60 \text{ seconds}$ $1 \text{ kWh} = 100 \times 60 \times 60 \text{ J}$ $0.55 \times 100 \times 60 \times 60$	You have correctly multiplied by 3600 to convert from hours to seconds. Mistake: You have incorrectly multiplied by 100 to convert from kW to W, when you should have multiplied by
С	×	= 200 000 J E = 0.55 kWh $1 \text{ W} = 1 \text{ Js}^{-1}$ $k = \times 10^3$ Vs Vs Vs Vs Vs Vs Vs Vs	You have incorrectly multiplied by 1000 to Mink You have you ha
D	✓	E = 0.55 kWh $1 \text{ W} = 1 \text{ Js}^{-1}$ $k = \times 10^3$ 1 kWs = 1000 J $1 \text{ hour} = 60 \times 60 \text{ seconds}$ $1 \text{ kWh} = 1000 \times 60 \times 60 \text{ J}$ 0.55×3600000 = 2000000 J	
A B	x x	The radius of a human head	Question 15

Therefore,

 $\frac{4}{3}\pi\times(0.1)^3\approx\times10^{-3}\text{ m}^3$

D

	7io	
	49	
	T 00	
Œ	ducati	on,

		Question 1	6
A	×	$\varepsilon = \frac{E}{Q}$ $\varepsilon = \frac{50}{5.2} = 9.6 \text{ V}$ % uncertainty in $Q = \frac{0.1}{5.2} \times 1^{\circ}$. \(\frac{1}{5} \) \(\frac{1}{5}	Mistake: You hap ercentage uncertainty form The equation for $\%$ uncertainty Therefore to compercentage uncertainty form $\Delta a = \frac{\% \text{ uncertainty}}{100\%}$
В	~	$\varepsilon = \frac{E}{Q}$ $\varepsilon = \frac{50}{5.2} = 9.6 \text{ V}$ % uncertainty in $Q = \frac{0.1}{5.2} \times 100\% = 1.9\%$ % uncertainty in $E = \frac{5}{50} \times 100\% = 10\%$ % uncertainty in $\varepsilon = (10\% + 1.9\%) = 11.9\%$ absolute uncertainty in $\varepsilon = \frac{11.9}{100} \times 9.6$ $\varepsilon = 9.6 \pm 1.1 \text{ V}$	
С	×	$\varepsilon = \frac{E}{C}$ % uncertainty in $Q = \frac{0.1}{5.2} \times 100\% = 1.9\%$ % uncertainty in $E = \frac{5}{50} \times 100\% = 10\%$ % uncertainty in $\varepsilon = (10\% - 1.9\%) = 8.1\%$ absolute uncertainty in $\varepsilon = \frac{8.1}{100} \times 9.6 = 0.8$ $\varepsilon = 9.6 \pm 0.8 \text{ V}$	Mistake: You had from one another the uncertaintie. The rule for companities are distributed in the state of the state o
		70 ± 0.8 V	

		$\varepsilon = \frac{E}{Q}$ $\varepsilon = \frac{50}{5.2} = 9.6 \text{ V}$
		% uncertainty in $Q = \frac{0.1}{5.2} \times 100\% = 1.9\%$
		% uncertainty in $E = \frac{5}{50} \times 100\% = 10\%$
		% uncertainty in $\varepsilon = (10\% - 1.9\%) = 8.1\%$
		$\varepsilon = 9.6 \pm 8.1 \text{ V}$
D	×	
		Zio
		Question 17
		$E = F \times d$

Mistake: You have subtracted the uncertainties from one another when you should have added the uncertainties together.

The rule for combining uncertainties when quantities are divided by one another is:

If
$$C = \frac{A}{B}$$

 $A \pm \mathbf{a}$ and $B \pm \mathbf{b}$

$$C = \frac{(A \pm a)}{(B \pm b)}$$

$$C = \frac{A}{B} \pm (\mathbf{a} + \mathbf{b})$$

Additionally, you percentage unc uncertainty for The equation for

% uncertainty

Therefore to con percentage unce uncertainty form $\Delta a = \frac{\% \text{ uncertainty}}{}$

100%

CHON

		Question 1	7
Α	ж	$E = F \times d$ $J = kg m s^{-2}.m$ $J = kg m^{2} s^{-2}$	
В	×	$E = F \times d$ $J = Nm$	
С	ж	$E = P \times t$ $J = Ws$	
D	·	$E = \frac{\mathbf{Q}}{\mathbf{V}}$ $\mathbf{J} = \mathbf{C}\mathbf{V}^{-1}$	The relationship $E = QV$ which joules as CV. Mistake: You have the value of the point of th
		Question 18	8
A	V		
В	×	These units can be used for current but are various	orders of magnit
\overline{c}	×	amperes (A).	

COPYRIGHT PROTECTED

D

	7 ig	ı
	700	
_		
E	ducation	,

		Question 1	9
Α	×	$v = \frac{d}{t}$ $v = \frac{700}{0.09}$ $v = 7777.8 \text{ m s}^{-1}$ $v = \frac{7777.8}{\times 10} \text{ km s}^{-1} = 780 \text{ km s}^{-1} (2 \text{ s. f.})$	The correct nuncarried out. Mistake: You hams ⁻¹ to kms ⁻¹ instead of ×10 ³
В	x	$v = \frac{d}{t}$ $v = \frac{700}{0.09}$ $v = 7777.8 \text{ m s}^{-1}$ $v = \frac{7777.8}{\times 10^2} \text{ km s}^{-1}$ $v = 77.8 \text{ km s}^{-1} = 78 \text{ km s}^{-1} (2 \text{ s.f.})$	The correct numcarried out. Mistake: You hams ⁻¹ to kms ⁻¹ instead of ×10 ³
С	~	$v = \frac{d}{t}$ $v = \frac{700}{0.09}$ $v = 7777.8 \text{ m s}^{-1}$ $v = \frac{7777.8}{200}$	
D	×	$v = \frac{d}{t}$ $v = \frac{700}{0.09}$ $v = 7777.8 \text{ km s}^{-1} = 7800 \text{ km s}^{-1} (2 \text{ s.f.})$	The correct nuncarried out. Mistake: You hakm s ⁻¹ . You neto km s ⁻¹ .
		Question 20	0
Α	×	These are equivalent to J.	
В	*	These units are equivalent to J.	
С	✓	These units are not equival	the units for pov
D	*	These units are 3 = 7a ¹ 3. t-10 J.	

Topic 2: Particles and Radiation

			Question 1
Α	×	Falso 70 tournion	Mistake: You have identified the mass of the mass of a protest and neutron. $m_n = 1.67 \times 10^{-27} \text{ kg}$ $m_e = 9.11 \times 10^{-31} \text{ kg}$ Therefore $m_e < m_p$ and $m_e < m_n$ The mass of the electron is therefore small and the neutron.
В	~	True	$q_e = -e$ $q_p = +e$ $e = 1.6 \times 10^{-19} \text{ C}$ Therefore $q_e = -q_p$
С	ж	False	Mistake: You have identified that the charge of a proton. $q_n = 0$ $q_p = 1.6 \times 10^{-19} \text{ C}$ Therefore $q_p = 0$ Therefor
D	x	79 720 Education False	You have correctly identified that the methe mass of a proton. Mistake: You have incorrectly identified greater than the mass of a neutron. $m_n = 1.67 \times 10^{-27} \text{ kg}$ $m_p = 1.67 \times 10^{-27} \text{ kg}$ $m_e = 9.11 \times 10^{-31} \text{ kg}$ Therefore $m_e < m_p$ and $m_e < m_n$ The mass of the electron is therefore small and the neutron.
Α	×	Zigo de la constante de la con	Question 2 Mistake: Ye has a new rectly identified now be of atrons. The number of neutrons should be found at a nucleon number = number of neutrons are proton number = number of protons.

NSPECTION COPY

В	ж	$ \begin{array}{c} {}^{A}_{Z}\text{Li} \\ \mathbf{A} + \mathbf{Z} \\ = 7 + 3 \\ = 10 \end{array} $	Mistake: You have added the nucleon (A + Z). You should have subtracted Z A = nucleon number = number of neutr Z = proton number = number of proton
С	×	Z ₂ Li	Mistake: You have noncorrectly identified number (e) ons. The number of neutrons should be found at a nucleon number = number of neutrons are proton number = number of proton.
D	V	$_{Z}^{A}$ Li A = number of neutrons and Z = number of protons Number of neutrons = A - Z	-
			Question 3
Α	ж	${}^{14}_{6}C \rightarrow {}^{14}_{X}N + {}^{0}_{-1}e + Y$ ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e + V_{e}$ $X = 7$ $Y = V_{e}$	You have correctly identified X by undenumbers (Z) and nucleon numbers (A) Mistake: You have identified Y as the nantineutrino. An artineutrino is needelepton num in the onserved; the neutrino is needelepton numbers (A)
В	~	$ \begin{array}{c} \begin{array}{c} & 14 \\ & 6 \\ & 7 \\ & 14 \\ & 7 \\ & 14 \\ & 7 \\ & 14 \\ & 7 \\ & 14 \\ & 7 \\ & 14 \\ & 7 \\ & 14 \\ & 7 \\ & 14 \\ & 7 \\ & 14 \\ & 7 \\ & 14 \\ & 7 \\ & 14 \\ & 7 \\ & 14 \\ & 7 \\ & 14 \\ & 7 \\ & 10 \\ $	
С	x	$ \begin{array}{l} $	Mistake: You have not equated the pronumbers (Z) on either side of the equations conserved. Additionally, you have identified Y as the antineutrino. An antineutrino is not lepton number are conserved; the neutquantities.
D	×	$ \begin{array}{c} $	You have consider y dentified Y as the a Missik Variate incorrectly identified to proton numbers (Z) and nucleon n

NSPECTON COPY

INSPECTION COPY

		Question	8
Α	~	$E_{k \max} = hf - \phi$ $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$ $E_{k \max} = (6.63 \times 10^{-34}) \times (2.8 \times 10^{15})$ $-(4.3 \times 1.6 \times 10^{-19})$ $E_{k \max} = 1.2 \times 10^{-18} \text{ J}$	
В	×	$E_{k \max} = hf - 2$ $E_{k \max} = 10^{-34} \times (2.8 \times 10^{15}) - 4.3$ $E_{k \max} = -4.3 \text{ J}$	You have correctly $E_{k \max}$. Mistake: You have function (ϕ) from multiplied the wo
С	×	$E_{kmax} = \mathbf{hf} + \phi$ $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$ $E_{k \text{max}} = (6.63 \times 10^{-34}) \times (2.8 \times 10^{15})$ $+ (4.3 \times 1.6 \times 10^{-19})$ $E_{k \text{max}} = 2.5 \times 10^{-18} \text{ J}$	Mistake: You have to the energy of the have subtracted. The maximum position in fact be the energy photon (hf) minute the surface of the result ($E_{k \max} = hf - \phi$).
D	×	$E_{k \max} = (6.63 \times 10^{-34}) \times (2.8 \times 10^{15}) + 4.3$ $E_{k \max} = 4.3 \text{ J}$	Mistake: You have function (ϕ) from multiplied the wo Additionally, you (ϕ) to the energy should have subtraction (f) minutes the surface of the function (f) minutes f (f)
A	ж	$hf = E_1 - E_2$ $f = \frac{E_1 - E_2}{h}$ $f = \frac{(-0.9) - (-1.5)}{6.63 \times 1}$ $f = \frac{7.9}{6.000000} \frac{1.1 \cdot 1.5}{3 \times 10^{-34}}$ $f = 9.05 \times 10^{32} \text{ Hz}$	Mistake: You have values from eV in be multiplied by e This needs to be dijoules.

NSPECTION COPY

equate to a positive $f = \frac{E_1 - E_2}{h}$ $f = \frac{E_1 - E_2}{h}$ $f = \frac{(-0.9 \times 1.6 \times 10^{-19}) - (-1.5 \times 1.6 \times 10^{-19})}{6.63 \times 10^{-34}}$ $f = \frac{(-0.9 \times 1.6 \times 10^{-19}) - (1.5 \times 1.6 \times 10^{-19})}{6.63 \times 10^{-34}}$ $= -5.79 \times 10^{14} \text{ Hz}$ $E = 45 \text{ eV}$ $\frac{45}{1.6 \times 10^{19}}$ $= 2.8 \times 10^{-18} \text{ J}$ $\text{Mistake: You have eV and J. You have eV and E. (1.6 \times 10^{19}) where the evalue eV and E. (1.6 \times 10^{19}) where eV and E. (1.6 \times 10^{19}) wher$	В	~	$f = \frac{E_1 - \frac{1}{h}}{h}$ $1 \text{ eV} = (1.6)$ $f = \frac{(-0.9)}{h}$ $f = \frac{(-0.9)}{h}$	$\frac{E_2}{6 \times 10^{-19}})$ $\frac{9 \times 1.6 \times 10^{-19}) - (-1.5 \times 1.6 \times 10^{-19})}{6.63 \times 10^{-34}}$ $\frac{9 \times 1.6 \times 10^{-19}) + (1.5 \times 1.6 \times 10^{-19})}{6.63 \times 10^{-34}}$	
eV and J. You have $e = 1.6 \times 10^{-19}$ who by the constant. Additionally have value 1.6×10^{-19} for value is 1.6×10^{-19} for value is 1.6×10^{-19} for value is 1.6×10^{-19} . Question 10 Up and Charm both have charge $+\frac{2}{3}$ and Down and Strang Since all four are quarks, then all quarks cannot have the sate The charge of their antiparticles will be equal in magnitude to Anti-up, Anti-charm, Anti-down and Anti-strange will have respectively. Therefore all antiquarks also cannot have the same value for B * True	С	ж	$f = \frac{E_1 - \frac{1}{h}}{h}$ $f = \frac{(-0.9)}{100}$ $f = \frac{(-0.9)}{100}$ $f = \frac{(-0.9)}{100}$	$\frac{E_2}{9 \times 1.6 \times 10^{-19}}) - (-1.5 \times 1.6 \times 10^{-19})$ $\frac{6.63 \times 10^{-34}}{9 \times 1.6 \times 10^{-19}}) - (1.5 \times 1.6 \times 10^{-19})$ $\frac{6.63 \times 10^{-34}}{6.63 \times 10^{-34}}$	
Up and Charm both have charge $+\frac{2}{3}$ and Down and Strange Since all four are quarks, then all quarks cannot have the sa The charge of their antiparticles will be equal in magnitude by Anti-up, Anti-charm, Anti-down and Anti-strange will have respectively. Therefore all antiquarks also cannot have the same value for B * True	D	ж	$\frac{45}{1.6 \times 10^{19}}$	-18 J	eV and J. You have $e = 1.6 \times 10^{-19}$ who by the constant. Additionally have value 1.6×10^{19} for value is 1.6×10^{-19} .
B * True	A	~	79 Zog Education	Up and Charm both have charge $+\frac{2}{3}$ and Since all four are quarks, then all quarks. The charge of their antiparticles will be each that the charge of their antiparticles will be each the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of their antiparticles will be each that the charge of the charg	d Down and Stran g s cannot have the sa qual in magnitude b ti-strange will have
C * True	В	х	True		
	C	х	True		

INSPECTION COPY

COPYRIGHT PROTECTED

True

		Question	11
		Not true	Isotopes are two
A	×		element with the sprotons) but diffe
 	~	The second secon	protons) but unite
В		True	
		Not true	Mistake: You have
			and ⁴ He are isoto
С	×		Isotopes are two
		700	element with the
		Education	different number
		Not true	You have correctl
			same atomic num Mistake: You have
			isotopes also have
D	×		
			Isotopes have a d itherefore they mu
			number.
		Question	12
		-	You have correctly
		E = hf	Mistake: You hav
		$f = \frac{c}{\lambda}$	to J. You need to
		$E = \frac{hc}{c}$	energy by $e = 1.6$
		$F = \frac{\lambda}{\lambda}$ $E = \frac{hc}{\lambda}$	
		7.3	
A	^	Edicated	
		$GeV = \times 10^9 \text{ eV}$	
		$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$	
		$\lambda = \frac{(6.63 \times 10^{-34}) \times (3 \times 10^8)}{100 \times 10^9}$	
		$\lambda = 1.99 \times 10^{-36} \text{ m}$	
		E = hf	You have correctl Mistake: You have
		$f = \frac{c}{\lambda}$	
		_ hc	$= \times 10^9$).
		$E = \frac{hc}{\lambda}$	*
		$\lambda = \frac{hc}{E}$	
В	×		
		799 11 JE√	
		1 Educati. 6×10 ⁻¹⁹ J	
		$\lambda = \frac{(6.63 \times 10^{-34}) \times (3 \times 10^8)}{100 \times 1.6 \times 10^{-19}}$	
		$\lambda = 1.24 \times 10^{-8} \text{ m}$	

NSPECTON COPY

NSPECTION COPY

COPYRIGHT
PROTECTED

	710	
	49	
	aq	
E	ducatio	
U	obeduc	Ш

		E = hf	
		$f = \frac{c}{\lambda}$	
		$E = \frac{hc}{\lambda}$	
		$E = \frac{\lambda}{\lambda}$	
C	~	$\lambda = \frac{hc}{E}$ $GeV = \times 10^9 \text{ eV}$	
		$GeV=\times 10^9 eV$	
		1 eV=1.6×10 ⁻¹⁹ J	
		$\lambda = \frac{(6.63 \times 10^{-34}) \times (3 \times 10^8)}{(100 \times 10^9) \times (1.6 \times 10^{-19})}$	
		$\begin{array}{c} (100 \times 10^{7}) \times (1.6 \times 10^{-3}) \\ \lambda = 1.24 \times 10^{-17} \text{ m} \end{array}$	
		$\lambda = 1.24 \times 10^{\circ}$ III	
		$\lambda = 1.24 \times 10^{-17} \text{ m}$ $E = hf$	You have correctly
		173	from eV to J. Mistake: You have
		709 Education	speed of light c
		$\mathbf{E} = \frac{\mathbf{C}}{\mathbf{c}}$	speed of light <i>c</i> by
	×	$\lambda = \frac{Ec}{h}$	The relationship b
		$GeV = \times 10^9 \text{ eV}$	
		$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$	
		$\lambda = \frac{(100 \times 10^9) \times (1.6 \times 10^{-19}) \times (3 \times 10^8)}{(6.63 \times 10^{-34})}$	
		(6.63×10^{-34})	
		$\lambda = 7.24 \times 10^{33} \text{ m}$	
		Question	13
		Mistake: You was it is tiff	ed the threshold fr

			Question 13
A	x	False	Mistake: You as it is tiffed the threshold free frequency to induce electron emission of the first and the second of the second
В	×	719 Education False	Mistake: You have identified time as a factor the emission. Only intensity of the radiation affects the rate
С	×	False	Mistake: You have indicated that light of freq frequency can increase the number of emitted. Any frequency below the threshold frequency, emit any electrons.
D	~	True	

A		
1		
١.		4

	I.	
	30000000000000000000000000000000000000	
		3
		,
		À
*		
30000000		
		:
300000		
di		
		1
		9
- "		
		۳
	/	
		•
//		
		d
**		*
		1
.000000000		
		į
	100	
		4

COPYRIGH1
PROTECTED
PROTECTED

	7 io	١
	4 9	
	ag	
E	ducation	
Y	Joedicion	

			Question 14
		$\mu^- \to X + \overline{v_e} + Y$	You have correctly identified Y.
		$\mu^{-} \rightarrow e^{+} + \frac{e}{v_{e}} + v_{\mu}$	Mistake: You have incorrectly identified X
A	×	$\mathbf{X} = \mathbf{e}^+$	charge is conserved during the decay:
		$X = e^+$ $Y = v_{\mu}$	$-1 \rightarrow +1 +0 +0$
		μ,	
			The major s – r before and +1 after which b 1
		$\mu^- \rightarrow X + \nu$	ou have correctly identified X .
		$V_{e} + V_{\mu}$	Mistake: You have incorrectly identified Ya
В	×	X Education	ensured that the lepton number is conserved
		$Y = \overline{V_{\mu}}$	+1 → −1 −1 −1
			The lepton number is +1 before and –3 after v
		$\mu^{-} \to X + \overline{v_e} + Y$ $\mu^{-} \to e^{-} + \overline{v_e} + v_{\mu}$ $X = e^{-}$	
C	/	$\mu^- \to e^- + \overline{v_e} + v_\mu$	
		$X = e^{-}$	
		$Y = v_{\mu}$	
		$\mu^- \rightarrow X + \overline{v_e} + Y$	Mistake: You have incorrectly identified X a
		$\mu^{-} \rightarrow e^{+} + \overline{v_e} + v_{\mu}$	charge is conserved during the decay:
			$-1 \rightarrow +1 + ($
		$X = e^{+}$ $Y = \overline{v_{\mu}}$	
		- "	The charge is –1 before and +1 after which br
D	×	7.9	Additionally you bear in a good of the co
		Education	Additionally, you have incorrectly identified
			ensured that the lepton number is conserved
			+1 → −1 −1 −1
			The lepton number is +1 before and –3 after v
			•
			Question 15
		total energy before = to	
		total energy of electron	•
A	/	= total energy of 2 pho	
		$2E_o = 2hf_{\min}$	
		Energy of one photon:	
		$hf_{\min} = E_o$	
		79 118575	oue-
		Zog Education	

		total energy before = total energy after	Mistake: You have determine	d the enerov of hoth of
		total energy of electron + positron =	the photons created in	
		= total energy of 2 photons	only asks for the energ	
B			therefore you need to d	
-	×	$2E_o = 2hf_{\min}$	The total energy before	
		Energy of photons:	The total energy before between each photon p	
		$2hf_{\min} = 2E_{o}$	between each photon p	
			The energy of one pho	
-				
		total energy before = total energy after	Ai ake: You have inco	
		total energy of electron + posit	combined energy of an	
		= total energy of 2 1 στο. s	The energy of an elect	
		$E_c = hf_{m}$	of its antiparticle, the p	
		1 73 or one photon:	combined energy w	
C	×	Education of one proton.		
		$\frac{1}{2}hf_{\min} = \frac{1}{2}E_{\alpha}$	Additionally, you have	
			combined energy of tw	
			photon has energy hf	
			energy will be 2hf _{min}	
		total energy before = total energy after	Mistake: You have inc	
		total energy of electron + positron	energy before the anni	
			photon created during	
		= total energy of photon	energy before is split e	
		$2\mathbf{E}_{o} = \mathbf{hf}_{\min}$	created.	
D	×	Energy of 2 photons:	A dilitionally year have	
		$2hf_{\min} = 4E_{o}$	1 litionally, you have f the photons created	
			question only asks for	
			photons and therefore	
		COE S	for energy by 2 .	
		Quest	ion 16	
		Education		
A	×			
В	~			
С	×			
-	44			
D	×			
		Quest	ion 17	
		You have correctly identified X .		
		Mistake: You have incorrectly identi	fied Y as e ⁺ and in turn	COPYRIGHT
		charge is conserved during the decay		PROTECTED
A		*		
		$0 \rightarrow +1 +1 +0$		
			• • • • • • • • • • • • • • • • • • •	
		The charge be 1 12 ic the charge	after is +2, which break s	7/16
				7,9
		719		aq
		Education		Education
				Eogeanoli

В		×	Mistake: You have incorrectly identified baryon number is conserved: $+1 \rightarrow 0 + 0 + 0$ The baryon number before is +1 but after i	·
С		√		
D		Zio Zio Education	Mistake: You have incorrectly identified \mathbf{X} as \mathbf{B}).	\mathcal{V}_u not ensuring cor
			The charge before is 0 and after is +1, which	th breaks conserva
			Question	18
Α	х	True		
В	х	True		
С	х	True		
D	✓	Not true		An ion by definite Therefore it must electrons and pro
			S S In	19
Α	x	True		
В	х	True	CICECITE	
С	√	N Education		Strong nuclear fo two neutrons, two neutron.
D	×	True		

NSPECTION COPY

			Question 20
		$\mathbf{E} = \frac{\mathbf{f}}{\mathbf{h}}$	Mistake: You have divided freque you should have multiplied f by
	4.	$\mathbf{E} = \frac{\mathbf{c}}{\mathbf{h}\lambda}$	The correct relationship between $E = \frac{1}{2}$
A	×	$\lambda = \frac{c}{hE}$	
		$\lambda = \frac{1}{1.8 \times 10^{-19}}$	
		E = hf	Mistake: You have divided wave
		$E = h\frac{\lambda}{\mathbf{c}}$	when you should have divided t
В	×	$\lambda = \frac{Ec}{h}$	The correct relationship between
		$\lambda = \frac{1.8 \times 10^{-19} \times 3 \times 10^8}{(6.63 \times 10^{-34})}$	
		$\lambda = 8.2 \times 10^{22} \text{ m}$	
С	/	$\lambda = \frac{(6.63 \times 10^{-34}) \times (3 \times 10^8)}{(1.8 \times 10^{-19})}$	
		$\lambda = 1.1 \times 10^{-6} \text{ m}$	CO.
		$\mathbf{E} = \frac{\mathbf{h}}{\mathbf{h}}$	Mistake: You have divided the $\mathfrak c$ you should have multiplied f by
		E Education Ac	The correct relationship between
D	x	$\lambda = \frac{h}{Ec}$ $\lambda = \frac{(6.63 \times 10^{-34})}{(1.8 \times 10^{-19}) \times (3 \times 10^{8})}$	E = hf.
		$\lambda = \frac{(6.63 \times 10^{-34})}{(1.8 \times 10^{-19}) \times (3 \times 10^{8})}$	Additionally, you have multipli e wavelength λ when you should
		$\lambda = 1.2 \times 10^{-23} \text{ m}$	\mathbf{c} by λ .
			The correct relationship between

	Topic o. Waves					
				Question 1		
A	×	1	False Phase difference is a measured in angles , and therefore can degrees.			
В	×	False A	Amplitude is	half the distance bety a crest and a corre		
С	×		The equation relation period and the period: $f = \frac{1}{T}$			
D	~	799				
		Education		Question 2		
A	✓	Sound is	a longitudi r	-		
В	×		<u> </u>			
C	ж					
D	×					
				Question 3		
		$v = f\lambda$		Mistake: You have not converted the value for		
A	×	v = 5.6	×0.8	You should have multiplied the value for wa		
		v = 4.48	8 ms ⁻¹	Your answer is in fact it im s ⁻¹ .		
		$v = f\lambda$				
В	~	v = 5.6	$\times 0.8 \times 10^{-2}$	ALONO TO THE PROPERTY OF THE P		
		v = 0.0	×0.8×10 ⁻²			
		719 109 Education f		Mistake : You have divided frequency ${f f}$ by ${f v}$		
	,	λ		have multiplied the two values together.		
C	¥	$v = \frac{5.6}{0.8}$ $v = 7.0$		The correct relationship is $v = f \lambda$.		
	_	$\begin{vmatrix} 0.8 \\ v = 7.0 \end{vmatrix}$	m s ⁻¹	Additionally, you have not converted the val		
		- 7.0	1110	You should have multiplied the value for wa		
				Your answer is in fact in cm s ⁻¹ .		
		$v = \frac{\lambda}{f}$		You have correctly converted from cm to m.		
	4:	$\int_{0.0}^{f}$	10-2	Mistake: You have divided wavelength λ by have multiplied the two values together.		
D	×	$v = \frac{0.8}{2}$	$\frac{\times 10^{-2}}{5.6}$			
			010 m s ⁻¹	The correct relation $f(x) = f(\lambda)$.		
				Ouestion 1		
4	4			Question 4		
A	*	709 Education				
В	*	False	Two polaria	ing filters at right angles to each ather would		
С	V	False	_	sing filters at right angles to each other would p and therefore let through no light at all.		
D	×	True				

Zig Zag Education

		Question 5	
Α	x	$\lambda = \frac{1}{2}L$ $\lambda = \frac{1}{2} \times 1.2$ $\lambda = 0.6 \text{ m}$	Mistake: You had harmonic of a seconds will represent the action wave will there the string, $\frac{1}{2}L$. The first harmonized at both enotherefore the water the length
В	~	$\lambda = 2L$ $\lambda = 2 \times 1.2$ $\lambda = 2.4 \text{ m}$	
С	ж	$\lambda = L$ $\lambda = 1.2 \mathrm{m}$	Mistake: You harmonic of a sends will represhave then deterwave will therestring L . The first harmofixed at both entherefore the wat wice the length
D	x	$\frac{78}{200000} 4 \times 1.2$ $\lambda = 4.8 \text{ m}$	Mistake: You h harmonic of a s ends will repres wave. You have wavelength of to four times the The first harmo at both ends wi therefore the wa twice the length
А	×	Question 6 $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$ $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$ 12.0 Hz	You have used frequency. Mistake: You have the $\frac{T}{\mu}$ term in

	В		$f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$	
			$f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$ $f = \frac{1}{2 \times 53 \times 10^{-2}} \times \sqrt{\frac{0.2}{0.01}}$ $f = 4.2 \text{ Hz}$	
-	С	*	$f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$ $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$ $\frac{79}{2 \times 53} \sqrt{\frac{0.2}{0.01}}$ $f = 0.04 \text{ Hz}$	You have used frequency. Mistake: You have used frequency. Mistake: You have used frequency to have used frequency to have used frequency to have used frequency to have used frequency.
	D	x	$\mathbf{f} = \frac{1}{2\mathbf{l}} \sqrt{\frac{\mu}{\mathbf{T}}}$ $f = \frac{1}{2 \times 53 \times 10^{-2}} \times \sqrt{\frac{0.01}{0.2}}$ $f = 0.2 \text{ Hz}$	Mistake: You have length μ by perfect the perfect length μ . The correct equal $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$
				OP ^N 7
	A	×	True	<i>y</i> *****
	В С	*	True 79 Aucaton	The refractive index of a sumaterial.
				Therefore the angle of inci any effect on the refractive
ŀ	D	×	True	
			O_{i}	uestion 8
	A	ж	$i + r = 90^{\circ}$ $r = 90^{\circ} - 37^{\circ}$ $r = 53^{\circ}$	Mistake: You have identifit i and r is that they add to You should have used the $n_1 \sin i = n_2 \sin r$ to c' in the angle of reference $n_1 \sin i = n_2 \sin r$
-	В	×	$i = r$ $r = 37^{\circ}$	Estake: You have identifice qual to the angle of incide You should have used the $n_1 \sin i = n_2 \sin r$ to determine the angle of respectively.

		ı		
С		$n_1 \sin i =$	-	
		$\sin r = \frac{n_1}{n_2}$	$\frac{\sin i}{}$	
	V		n_2	
	"	$\sin r = \frac{1}{2}$	$\frac{\langle \sin 37 \rangle}{2.41}$	
		$\sin r = 0$.		APY
		$r = 14.5^{\circ}$		
		$n_1 \sin i =$		You have used the correct r
		719	Sar	incidence and the angle of a Mistake: You have obtained
		Edication	$\overline{n_2}$	refraction, 14.5°, but then h
		$\sin r = \frac{1}{2}$	$\times \sin 37$	from 90° when you didn't r
D	×	$\sin r = 0.$	2.41	
		$r = 14.5^{\circ}$		
		90° - 14.		
		= 75.5°		
			O	uestion 9
		False	If $i > $ critical angle and the i	
A			other, then total internal reflec	
	"		Both conditions need to hold i	
		_	than the critical angle a or. is	enough.
B	*	True		
C	<i>x</i>	True		
D	×	Education		
			-	estion 10
A	х	False	Core cladding needs to be of a reflection	lower refractive index than
В	~	True	Narrow cores ensure light can the same velocity	enter at a smaller range of a
С	×	False	Modal dispersion is the pulse through the core at different a	1
D	х	False	Light always travels at the sar	ne speed within a medium.
			.01	jest 11
		$n\lambda = d \operatorname{si}$	n θ	
$\lambda = \frac{d \sin \theta}{p}$ $\lambda = \frac{3. \times 10^{-6}) \times \sin 60}{p}$				
		$\lambda = 6.65$	$4 \times 10^{-7} \text{ m}$	
		n = 0.03	^1U III	

NSPECTON COPY

В		$\lambda = \frac{\mathbf{n}}{\mathbf{d}\mathbf{sin}\boldsymbol{\theta}}$	Mistake: You have divided have divided dsinθ by n .
	×	$\lambda = \frac{4}{(3.07 \times 10^{-6}) \times \sin 60}$	
		$\lambda = 1.50 \times 10^6 \text{ m}$	
		$n\lambda = d\sin\theta$	Sake: You have not con separation from μm to m
С	×	$\lambda = \frac{d\sin\theta}{n}$ $\frac{79}{69} (3.) \frac{1}{4} \sin 60$	3.07 μ m by 10^{-6} to conve
		$\lambda = 0.66 \text{ m}$	
		$\lambda = \frac{\mathbf{n}}{\mathbf{d}\mathbf{sin}\boldsymbol{\theta}}$	Mistake: You have divided have divided dsinθ by n.
D	×		Additionally, you have n
		$\lambda = \frac{4}{(3.07) \times \sin 60}$	diffraction separation from
		$\lambda = 1.50 \text{ m}$	multiplied 3.07 μm by 10
			uestion 12
		$s = \frac{\lambda D}{w}$	
A	~	$s = \frac{\lambda D}{w}$ $s = \frac{(720 \times 10^{-9}) \times 2.2}{(20 \times 10^{-2})}$	
		$s = 7.9 \times 10^{-6} \text{ m}$	
		73 21 703 00 p	Mistake: You have not con spacing <i>w</i> from cm to m .
В	×	$s = \frac{(720 \times 10^{-9}) \times 2.2}{(20)}$	value for fringe spacing, 20
		$s = 7.9 \times 10^{-8} \text{ m}$	
		$s = \frac{w}{\lambda D}$	Mistake: You have divided have divided λD by w .
С	×	$s = \frac{20 \times 10^{-2}}{(720 \times 10^{-9}) \times 2.2}$	The correct relationship for
		$s = 1.26 \times 10^5 \text{ m}$	
		$s = \frac{\mathbf{w}}{\lambda \mathbf{D}}$	rave divided λD by w .
D	×	$s = \frac{20}{(720 \times 10^{-3})} \cdot \frac{20}{(720 \times 10^{-3})}$	The correct relationship for
		79 2c×10 m	Additionally, you have no
		Education	spacing <i>w</i> from cm to m. value for fringe spacing, 20

			$Q\iota$	iestion 13	
A	x	True			
В	✓	False	Dark fringes are formed from the interference of light rays one another.		
С	×	True			
D	×	True		,O ¹⁵	
			CTON QI	uestion 14	
А	×	719 709 7000	Loundary.	in a wave's speed and wave	
В	×	False	Reflection is the effect of the an surface of the boundary.	gle of incidence being equal	
С	✓	True			
D	×	False	The longer the wavelength of the	ne wave the more it will diff	
			$Q\iota$	uestion 15	
		phase d	ifference = $\frac{\mathbf{d}}{\lambda}$	Mistake: You have not inc	
A	×	phase d	ifference = $\frac{(42 \times 10^{-2})}{0.96}$	The correct equation is $\frac{2\pi}{\lambda}$	
		phase difference = 0.44 radians			
В	*	phase d	ifference = $\frac{\lambda}{2\pi}$, 0.96 $2\pi \times (42 \times 10^{-2})$ ifference = 0.36 radians	have divided $2\pi d$ by λ . The correct equation for ph	
С	×	phase d	ifference = $\frac{2\pi d}{\lambda}$ ifference = $\frac{2\pi \times (42)}{0.96}$ ifference = 270 radians	Mistake: You have not cor from cm to m. You should order to obtain the answers	
D	~	phase d	ifference = $\frac{2\pi d}{\lambda}$ ifference = $\frac{2\pi \times (42 \times 10^{-2})}{0.96}$		
		pnase d	$ \frac{\text{ifference} = 2.7 \text{ radians}}{Qu} $	uestion 16	
A	×	79	1993		
В	✓	Education	The amplitude is half th wave.	e distance from a crest to th	
С	x	True			
	ж	True			

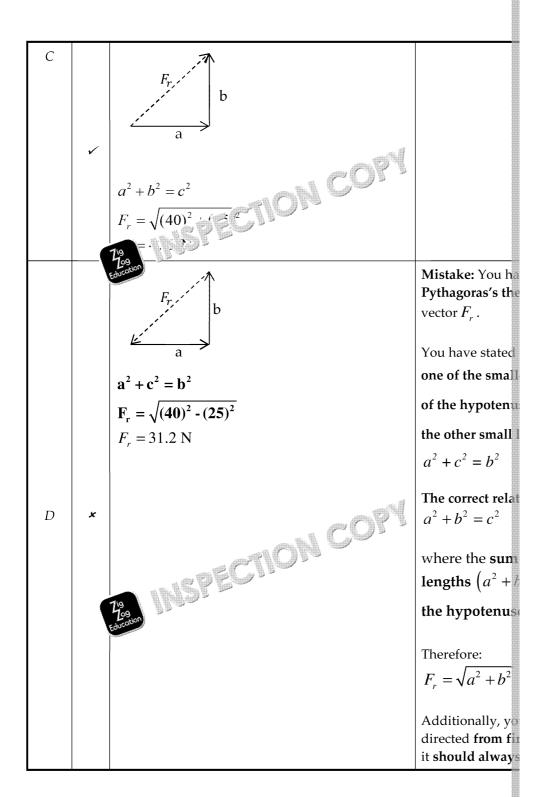
			Question 17
A	✓	$f_2 = \frac{c}{\lambda_2}$ $f_2 = \frac{c}{L}$ $f_1 = \frac{c}{2L}$ $f_2 = 2f_1$	
В	×	$f_{2} = \frac{c}{2L}$ $f_{1} = \frac{c}{2L}$ $f_{2} = f_{1}$	Mistake: You have identified that the relationship to wavelength of the second harmonic is $\lambda_2 = 2L$. The correct wavelength for the second harmonic is
С	x	$f_2 = \frac{c}{\lambda_2}$ $f_2 = \frac{c}{4L}$ $f_1 = \frac{c}{2L}$ $f_2 = \frac{1}{2}f_1$	Mistake: You have identified that the relationship by wavelength of the second harmonic is $\lambda_2 = 4L$. The correct wavelength for the second harmonic is
D	ж	$f_{2} = \frac{c}{\lambda}$ $f_{2} = \frac{c}{\lambda}$ $f_{1} = \frac{c}{2L}$ $f_{2} = 4f_{1}$	wavelength of the second harmonic is $\lambda_2 = \frac{L}{2}$. The correct wavelength for the second harmonic is
			Question 18
Α	se	$n = \frac{\sin 23}{\sin 7}$ $n = \frac{\sin 23}{\sin 37}$	Mistake: You have substituted the numerical values of refraction the wrong way round: $i=23^\circ$ instead of $i=37^\circ$ and $r=37^\circ$ instead of $r=23^\circ$

 $n = \frac{\sin i}{n}$

В

С	ж	$n = \frac{\sin i}{\sin r}$ $n = \frac{\sin 23}{\sin 37}$ $n = 1.3$	Mistake: You have substituted the numerical values for angle of refraction the wrong way round: $i = 23^{\circ} \text{ instead of } i = 37^{\circ}$ and $r = 37^{\circ} \text{ instead of } r = 23$ Additionally, you we appreted the calculation on y setting in the degrees setting.
D	ж	$\frac{\sin^{\frac{1}{2}}}{\sin^{\frac{1}{2}}}$ $\frac{\sin 37}{\sin 23}$ $n = 0.76$	si ke: You have completed the calculation on your instead of the degrees setting.
			Question 19
Α	×	True	
В	×	True	
С	×	True	
D	~	False	Laser beam light can permanently damage your retina light has first been reflected.
			Questica 20
A	×	$f = \frac{1}{T} = \frac{1}{1}$ $f = 1 \text{Hz}$	Mis'nk : Y. Lave not converted the value of the years. You need multiply the value of the years
В	V	$f = \frac{1}{1 \times 60}$ $f = 0.02 \text{ Hz}$	
С	ж	$f = 1 \times T$ 1 minute = 6 $f = 1 \times (1 \times 6)$ $f = 60 \text{ Hz}$	<u> </u>
D	×	$f = \frac{1}{T}$ 1 minute = 1	Mistak 7 1 ave multiplied by 100 to ds when you should have multip

NSPECTON COPY


COPYRIGHT PROTECTED

 $f = 0.01 \, \text{Hz}$

		Question 1	
A	×	Scalar	
В	ж	Scalar	
С	~	Vector	
D	ж	Scalar	
		Question 2	
Α	~	709 Faucation	
В	×	True	
С	х	True	
D	х	True	
		Question 3	
Α	×	$a^{2} + b^{2} = c^{2}$ $F_{r} = \sqrt{(40)^{2} + (25)^{2}}$ $F_{r} = 47.2 \text{ N}$	You used have determined the the resultant ve Mistake: You h from finish to s should always
В	x	$a^{2} + c^{2} = b^{2}$ $\mathbf{F}_{r} = \sqrt{\mathbf{b}^{2} - \mathbf{a}^{2}}$ $F_{r} = \sqrt{(40)^{2} - (25)^{2}}$ $F_{r} = 31.2 \text{ N}$	Mistake: You he Pythagoras's the vector F_r . You have stated one of the small of the hypotent the other small $a^2 + c^2 = b^2$ The correct relative $a^2 + b^2 = c^2$ The sum of the lengths $a^2 + b^2 = c^2$ The hypotenus of the lengths $a^2 + b^2 = c^2$

Zig Zag Education

V		7
	Ų,	
		20000
\		Ì

		1
-		80"
	7	"
		1
\		Ì
		٩
		j
	4	# #
		Bar.

7 ig		
/19		7/10
		/ 19
700		700
Education	00	Educati
LOUGULION	UII,	LOUCUL

hat if an ol	e th
her(S = V)	<i>N</i>)
d either be are either	e at equ
st therefor	∙e S
hat if an ol	— bjec
. Therefor	3
her(S = V)	<i>N</i>)
d be accele he force do	
st therefor	e S
hat if an ol. Therefore V .	- 1
d be accele than the fo	rce
	Mi
	the
	You val
	Mi by hav
	dis

$moment = \frac{F}{d}$ $moment = \frac{140}{39}$ $moment = 3.59 \text{ Nm}$ The principle of moments states that the sum of the sum of the sum of the anticlockwise moments. The principle of moments states that the sum of the sum of the sum of the anticlockwise moments. The principle of moments states that the sum of the sum of the sum of the anticlockwise moments. The principle of moments states that the sum of the sum of the sum of the anticlockwise moments. The principle of moments states that the sum of the sum of the sum of the anticlockwise moments. Outside the sum of the anticlockwise moments. Wistake: Yes an item of the sum of clockwise moments of the sum of clockwise moments. The principle should be 'Sum of clockwise moments on the sum of clockwise moments on the sum of clockwise moments on the sum of clockwise moments. The principle should be 'Sum of clockwise moments on the sum of clockwise moments. The principle should be 'Sum of clockwise moments on the sum of clockwise moments. The principle should be 'Sum of clockwise moments on the sum of clockwise moments. The principle should be 'Sum of clockwise moments on the sum of t				
moment = 3.59 Nm The model of the principle of moments states that the sum of to to the sum of the anticlockwise moments. The principle of moments states that the sum of to to the sum of the anticlockwise moments. True True True True True The principle of moments states that the sum of to to the sum of the anticlockwise moments. The principle of moments states that the sum of to to the sum of the anticlockwise moments. The principle of moments states that the sum of the to the sum of the anticlockwise moments. Whistake: You as Goodfact it is a Goodfact in the sum of the anticlockwise moments. The principle of moments states that the sum of the to the sum of the anticlockwise moments. Whistake: You as Goodfact it is a Goodfact in the principle should be 'Sum of clockwise moments'. The principle should be 'Sum of clockwise moments'. Therefore the correct relationship is:			d	by have
$A \times Add. $ $A \times $	Б.			Jm The
Question 6 A The principle of moments states that the sum of to the sum of the anticlockwise moments. The principle of moments states that the sum of to the sum of the anticlockwise moments. The principle of moments states that the sum of the tothe sum of the anticlockwise moments. True True True True The principle of moments states that the sum of the tothe sum of the anticlockwise moments. Question 6 The principle of moments states that the sum of the tothe sum of the anticlockwise moments. Question 6 The principle of moments states that the sum of the tothe sum of the anticlockwise moments. Question 6 The principle of moments states that the sum of the tothe sum of the anticlockwise moments. Question 6 The principle of moments states that the sum of the tothe sum of the anticlockwise moments. The principle of moments states that the sum of the tothe sum of the anticlockwise moments. The principle of moments states that the sum of the tothe sum of the anticlockwise moments. The principle of moments states that the sum of the tothe sum of the anticlockwise moments. The principle of moments states that the sum of the tothe sum of the anticlockwise moments.	D	×		
Question 6 A The principle of moments states that the sum of to the sum of the anticlockwise moments. The principle of moments states that the sum of to the sum of the anticlockwise moments. The principle of moments states that the sum of to the sum of the anticlockwise moments. True True True True The principle of moments states that the sum of the tothe sum of the anticlockwise moments. Questront Mistake: You are incorrectly identified the convertible of the sum of the anticlockwise moments. The principle of moments states that the sum of the tothe sum of the anticlockwise moments. Questront Mistake: You are incorrectly identified the relamoments to be 'Sum of clockwise moments = -Sum of the principle should be 'Sum of clockwise moments moments'. Therefore the correct relationship is:				
Question 6 The principle of moments states that the sum of to the sum of the anticlockwise moments. The principle of moments states that the sum of to the sum of the anticlockwise moments. True True True True The principle of moments states that the sum of to the sum of the anticlockwise moments. True True The principle of moments states that the sum of the sum of the anticlockwise moments. Upwards Force and correctly identified the constant of the sum of the anticlockwise moments. The principle should be 'Sum of clockwise moments to be 'Sum of clockwise moments to be 'Sum of clockwise moments. The principle should be 'Sum of clockwise moments moments'. Therefore the correct relationship is:				
Palse The principle of moments states that the sum of to the sum of the anticlockwise moments. The principle of moments states that the sum of to the sum of the anticlockwise moments. True True True True The principle of moments states that the sum of to the sum of the anticlockwise moments. True True True The principle of moments states that the sum of the to the sum of the anticlockwise moments. Question 6 What is a state of the sum of the anticlockwise moments. The principle of moments states that the sum of the to the sum of the anticlockwise moments. The principle of moments states that the sum of the to the sum of the anticlockwise moments. The principle of moments states that the sum of the to the sum of the anticlockwise moments. What is a state of the sum of the anticlockwise moments are sum of the anticlockwise moments. The principle of moments states that the sum of the to the sum of the anticlockwise moments. The principle of moments states that the sum of the to the sum of the sum of the anticlockwise moments.				
The principle of moments states that the sum of to the sum of the anticlockwise moments. The principle of moments states that the sum of the to the sum of the anticlockwise moments. The principle of moments states that the sum of the sum of the anticlockwise moments. True True The principle of moments states that the sum of the to the sum of the anticlockwise moments. Mistake: Yc an incorrectly identified the constant of the sum of the constant of the sum of the anticlockwise moments. A Mistake: Yc an incorrectly identified the constant of the sum of the sum of the anticlockwise moments. Mistake: Yc an incorrectly identified the relamoments to be 'Sum of clockwise moments = -Sum of clockwise moments = -Sum of clockwise moments. The principle should be 'Sum of clockwise moments moments'. Therefore the correct relationship is:				
to the sum of the anticlockwise moments. The principle of moments states that the sum of the to the sum of the anticlockwise moments. True True The principle of moments states that the sum of the to the sum of the anticlockwise moments. The principle of moments states that the sum of the sum of the anticlockwise moments. Whistake: You are incorrectly identified the constant of the sum of the anticlockwise moments. The principle should be 'Sum of clockwise moments are sum of the sum				(^) ^
to the sum of the anticlockwise moments. True The principle of moments states that the sum of the tothe sum of the anticlockwise moments. The principle of moments states that the sum of the tothe sum of the anticlockwise moments. Mistake: $\forall c$ and correctly identified the constant $\forall d$ and $\forall d$ an	A	*	79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to the sum of the anticlockwise moments.
The principle of moments states that the sum of to the sum of the anticlockwise moments. A Mistake: You are correctly identified the construction of the construction of the construction of the sum of the anticlockwise moments. Mistake: You have incorrectly identified the relation of clockwise moments to be 'Sum of clockwise moments = - The principle should be 'Sum of clockwise moments moments'. Therefore the correct relationship is:	В	х	False	
The principle should be 'Sum of clockwise moments. A False to the sum of the anticlockwise moments. Quest 7 Mistake: $\forall c$ and correctly identified the construction of the construction of the correctly identified the relationship is: The principle should be 'Sum of clockwise moments'. Therefore the correct relationship is:	С	✓	True	
Mistake: V_C and incorrectly identified the constraint of the c	D	*	False	
A work of the force of the for				Questin 7
Mistake: You have incorrectly identified the relamoments to be 'Sum of clockwise moments = - S The principle should be 'Sum of clockwise moments'. Therefore the correct relationship is:	Α	*	719 F. Couranton	Indon for equilibrium:
moments to be 'Sum of clockwise moments = - S The principle should be 'Sum of clockwise moments'. Therefore the correct relationship is:				$S = W_1 + W_2 + W_0$
B				
	В	×	False	
$W_1d_1=W_2d_2$				Therefore the correct relationship is:
				$W_1d_1 = W_2d_2$

 ${f stake}$: You have ${f divided}$ force ${f F}$ distance ${f d}$ when you should re $oldsymbol{\mathrm{multiplied}}$ the force $oldsymbol{\mathrm{F}}$ by

			Mistake: You have used an incorrect equation for
			have used $W_1d_2 = W_2d_1$ when you should have u
C	×	False	The correct relationship is therefore:
		2 3.13 3	
			$W_1 = \frac{W_2 d_2}{d_1}$
			d_1
D	√	True	
			Ce on 8
A	×	True	
В	×	Truc	
С	×	79 7 Le	
D	✓	False	The displacement can be determined by the area
			Question 9
		<i>v</i> + <i>u</i>	Mistake: You have added the
		$a = \frac{v + u}{t}$	velocity u when you should ha
	44	1 minute = 60 seco	onds u from the final velocity v .
A	×	$a = \frac{4.9 + 2.1}{(5 \times 60)}$	
		$a = 0.02 \text{ m s}^{-1}$	
		$a = \frac{v - u}{u}$	Mistake: You have not convert
		$a = \frac{v - u}{t}$ $a = \frac{4.9 - 2.1}{\sqrt{5}}$	minutes seconds. You should be ninates, by 60.
В	×	$a = \frac{4.9 - 2.1}{(5)}$	
		(5)	
		(5) $a = 0.56 \text{ m}$	
		Tog - u	
		4 9 – 2 1	
С	V	$a = \frac{4.9 - 2.1}{(5 \times 60)}$	
		$a = 0.01 \mathrm{m s^{-1}}$	
			Mistake: You have added the
		$a = \frac{r + u}{t}$	velocity ${f u}$ when you should h
D	×	$a = \frac{v+u}{t}$ $a = \frac{4.9 + 2.1}{(5)}$	u from the final velocity v .
		$a={(5)}$	Additionally you have not con
		$a = 1.4 \text{ m s}^{-1}$	minutes to seconds. You shou
			tim in ites, by 60.

NSPECTION COPY

the minde of memorie Veri

Additionally, you have not included the name and included the nam					
False If an object has constant velocity then by Newton's second la accelerating as there is no net external force acting on the observation of the velocity—time, accelerating at a constant rate at an exponential rate. Therefore the velocity—time, acceleration—time and displacement the same motion. If the acceleration of the object is increasing at a constant rate at an exponential rate. Therefore the velocity—time, acceleration—time and displacement the same motion. Mistake: You have identified that an object can be gaining displacement to the velocity is increasing at a linear rate. If an object is increasing its velocity at a linear rate then it we exponential rate. Therefore the velocity—time, acceleration—time and displacement the same motion. Question 11 Mistake: You have not squared the term to Additionally, you have not included the negative value to account for the fact it is direction. You should have used the value of the properties of the propertie					Question 10
False accelerating as there is no net external force acting on the observation. B False True C False If the acceleration of the object is increasing at a constant rate at an exponential rate. Therefore the velocity-time, acceleration-time and displacements and exponential rate. Therefore the velocity-time, acceleration-time and displacements and exponential rate. Therefore the velocity-time, acceleration-time and displacements and exponential rate. If an object is increasing at a linear rate then it we exponential rate. Therefore the velocity-time, acceleration impairs and displacements are exponential rate. Therefore the velocity-time, acceleration impairs and displacements are exponential rate. Therefore the velocity-time, acceleration impairs and displacements are exponential rate. Therefore the velocity-time, acceleration impairs and displacements are exponential rate. Therefore the velocity-time, acceleration impairs and displacements are exponential rate. Additionally, you have not squared the term to the squared the value of account for the fact it is direction. You should have used the value of the					·
the same motion. B	A	x	False	· · · · · · · · · · · · · · · · · · ·	-
False If the acceleration of the object is increasing at a constant rate at an exponential rate. Therefore the velocity-time, acceleration-time and displacement the same motion. Mistake: You have identified that an object can be gaining divelocity is increasing at a linear rate. If an object is increasing its velocity at a linear rate then it we exponential rate. Therefore the velocity-time, acceleration-time and displacement the same motion. Question 11 Mistake: You have not squared the term to the same motion. Question 11 Mistake: You have not included the nume and displacement to the same with the same motion. You should have used the value of account for the fact it is a direction. You should have used the term to the same motion. You have not squared the term to direction. You should have used the value of account for the fact it is a direction. Mistake: You have not squared the term to the squared the term to					ocity–time, a cel 😇 ion–time and displacem
accelerates at a linear rate. If the acceleration of the object is increasing at a constant rate at an exponential rate. Therefore the velocity-time, acceleration-time and displacement the same motion. Mistake: You have identified that an object can be gaining divelocity is increasing at a linear rate. If an object is increasing its velocity at a linear rate then it wexponential rate. Therefore the velocity-time, acceleration in the important in the same motion. Question 11 Mistake: You have not squared the term to the fact it is addrection. You should have used the value to account for the fact it is acting in the same motion. $y = \frac{1}{2}gt^2$ $y = \frac{1}{2}x - 9.8 \times (2.2)$ $y = -10.8 \text{ m}$ Mistake: You have not squared the term to the fact it is acting in the should have used the value of the fact it is acting in the should have used the value of the same in the same motion.	В	~	True		
at an exponential rate. Therefore the velocity–time, acceleration–time and displacement the same motion. Mistake: You have identified that an object can be gaining divelocity is increasing at a linear rate. If an object is increasing its velocity at a linear rate then it wexponential rate. Therefore the velocity–time, acceleration—time and displacement the same motion. Question 11 Mistake: You have not squared the term to the same motion. Additionally, you have not included the nonegative value to account for the fact it is direction. You should have used the value of the same motion. By $\frac{1}{2}gt^2$ $y = \frac{1}{2}x - 9.8 \times (2.2)^2$ $y = -23.7 \text{ m}$ Mistake: You have not squared the term to the squared the squared the term to the squared the term to the squared the squared the term to the squared th			Zig Zog Education	100 W	, , , , , , , , , , , , , , , , , , , ,
the same motion. Mistake: You have identified that an object can be gaining divelocity is increasing at a linear rate. If an object is increasing its velocity at a linear rate then it wexponential rate. Therefore the velocity—time, acceleration in and displacement the same motion. Question 11 Mistake: You have not squared the term to Additionally, you have not included the nonegative value to account for the fact it is adirection. You should have used the value of the value of the property of the pr	С	×	False		,
False Velocity is increasing at a linear rate. If an object is increasing its velocity at a linear rate then it wexponential rate. Therefore the velocity-time, acceleration ime and displacement the same motion. Question 11					ocity–time, acceleration–time and displacem
Palse exponential rate. Therefore the velocity-time, acceleration ime and displacement the same motion. Question 11 Mistake: You have not squared the term to account for the fact it is a direction. You should have used the value $y = \frac{1}{2}gt^2$ $y = \frac{1}{2}x - 9.8 \times (2.2)^2$ $y = -23.7 \text{ m}$ Mistake: You have not squared the term to account for the fact it is a direction. You should have used the term to account for the fact it is acting in the should have used the value $y = \frac{1}{2}x - 9.8 \times (2.2)^2$ Mistake: You have not squared the term to account for the fact it is acting in the should have used the value $y = \frac{1}{2}x - 9.8 \times (2.2)^2$ Mistake: You have not included the nume value to account for the fact it is acting in the should have used the value $y = -9.8$.					
the same motion. Question 11 Mistake: You have not squared the term to Additionally, you have not included the nonegative value to account for the fact it is a direction. You should have used the value $y = \frac{1}{2}gt^2$ $y = \frac{1}{2}x - 9.8 \times (2.2)^2$ $y = -23.7 \text{ m}$ Mistake: You have not squared the term to $y = \frac{1}{2}gt^2$ $y = \frac{1}{2}x - 9.8 \times (2.2)$ Mistake: You have not squared the term to $y = \frac{1}{2}y + \frac{1}{2}y - \frac{1}{$	D	×	False		easing its velocity at a linear rate then it wil
Mistake: You have not squared the term to Additionally, you have not included the nonegative value to account for the fact it is a direction. You should have used the value $y = \frac{1}{2}gt^2$ $y = \frac{1}{2}x - 9.8 \times (2.2)^2$ $y = -23.7 \text{ m}$ Mistake: You have not squared the term to $y = \frac{1}{2}gt^2$ $y = \frac{1}{2}x - 9.8 \times (2.2)$ $y = -10.8 \text{ m}$ Mistake: You have not squared the term to $y = \frac{1}{2}x - 9.8 \times (2.2)$ $y = -10.8 \text{ m}$ Mistake: You have not included the numerous value to account for the fact it is acting in should have used the value -9.8 .					ocity–time, accelerat: ime and displacement
Additionally, you have not included the nonegative value to account for the fact it is a direction. You should have used the value $y = \frac{1}{2}gt^2$ $y = \frac{1}{2}x - 9.8 \times (2.2)^2$ $y = -23.7 \text{ m}$ $y = \frac{1}{2}yt^2$ $y = \frac{1}{2}x - 9.8 \times (2.2)^2$ $y = -10.8 \text{ m}$ Mistake: You have not squared the term to the fact it is acting in the should have used the value $y = \frac{1}{2}x + 9.8 \times (2.2)^2$ $y = \frac{1}{2}x + 9.8 \times (2.2)^2$ Mistake: You have not included the numer value to account for the fact it is acting in the should have used the value $y = -9.8$.				-61	Question 11
negative value to account for the fact it is a direction. You should have used the value $y = 10.8 \text{ m}$ $y = \frac{1}{2}gt^2$ $y = \frac{1}{2} \times -9.8 \times (2.2)^2$ $y = -23.7 \text{ m}$ Mistake: You have not squared the term to $y = \frac{1}{2}gt^2$ $y = -10.8 \text{ m}$ Mistake: You have not included the nume value to account for the fact it is acting in should have used the value -9.8 .			$y = \frac{1}{T^{19}}$	2NSPE	Mistake: You have not squared the term t
$y = 10.8 \text{ m}$ $y = \frac{1}{2}gt^2$ $y = \frac{1}{2} \times -9.8 \times (2.2)^2$ $y = -23.7 \text{ m}$ $y = \frac{1}{2}gt^2$ $y = \frac{1}{2} \times -9.8 \times (2.2)$ $y = -10.8 \text{ m}$ $y = \frac{1}{2} \times 9.8 \times (2.2)$ $y = \frac{1}{2} \times 9.8 \times (2.2)^2$ Mistake: You have not included the nume value to account for the fact it is acting in should have used the value -9.8.	A	×	$y = - \times$	9.8×(2.2)	Additionally, you have not included the nu
$y = \frac{1}{2} \times -9.8 \times (2.2)^{2}$ $y = -23.7 \text{ m}$ $y = \frac{1}{2} gt^{2}$ $y = \frac{1}{2} \times -9.8 \times (2.2)$ $y = -10.8 \text{ m}$ $y = \frac{1}{2} \times 9.8 \times (2.2)^{2}$ Mistake: You have not included the nume value to account for the fact it is acting in should have used the value -9.8.					direction . You should have used the value
$y = \frac{1}{2} \times -9.8 \times (2.2)^{2}$ $y = -23.7 \text{ m}$ $y = \frac{1}{2} gt^{2}$ $y = \frac{1}{2} \times -9.8 \times (2.2)$ $y = -10.8 \text{ m}$ $y = \frac{1}{2} \times 9.8 \times (2.2)^{2}$ Mistake: You have not included the nume value to account for the fact it is acting in should have used the value -9.8.			$y = \frac{1}{2}gt$	2	
Mistake: You have not squared the term to $y = \frac{1}{2}gt^2$ $y = \frac{1}{2} \times -9.8 \times (2.2)$ $y = -10.8 \text{ m}$ Mistake: You have not included the numer value to account for the fact it is acting in the should have used the value -9.8 .	В	/	$y = \frac{1}{2} \times -$	$-9.8 \times (2.2)^2$	
$y = \frac{1}{2}x - 9.8 \times (2.2)$ $y = -10.8 \text{ m}$ $y = \frac{1}{2} \times 9.8 \times (2.2)$ $y = \frac{1}{2} \times 9.8 \times (2.2)^2$ Mistake: You have not included the nume value to account for the fact it is acting in the should have used the value -9.8.			y = -23	.7 m	
Mistake: You have not included the numer value to account for the fact it is acting in the should have used the value –9.8. Mistake: You have not included the numer value to account for the fact it is acting in the should have used the value –9.8.			_	2	Mistake: You have not squared the term t
Mistake: You have not included the numer value to account for the fact it is acting in the should have used the value –9.8. Mistake: You have not included the numer value to account for the fact it is acting in the should have used the value –9.8.	C	x		-9.8× (2.2)	
value to account for the fact it is acting in the should have used the value –9.8. $y = \frac{1}{2} \times 9.8 \times (2.2)^2$			y = -10	.8 m	
$y = \frac{1}{2} \times 9.8 \times (2.2)^2$			J. Education	2	Mistake: You have not included the numer value to account for the fact it is acting in the second of the fact it is acting in the fact it is
y = 23.7 m	D	×	$y = \frac{1}{2} \times 9$	$9.8 \times (2.2)^2$	should have used the value -9.8 .
			y = 23.7	m	

NSPEC ON COPY

				Question 12			
A	×	True		~			
В	~	False	The horizontal motion and vertical motion of a projectile are i				
С	×	True	. sub				
D	×	True		-084			
			Question 13				
Α	×	True	THE CITY				
В	×	79	(1/25)F-16				
C	х	Education	**				
D	~	False	An applied force is pro	pportional to the acceleration of the obj			
				Question 14			
		$\mathbf{F} - \mathbf{F}$		-			
		$\mathbf{F}_{\mathbf{d}} = \mathbf{F}_{\mathbf{net}}$ $F_{d} = ma$		Mistake: You have identified that the force \mathbf{F}_{net} acting on the skydiver.			
		$F_d = 65$		net dethis on the skydiver.			
		$F_d = 39$		The net force is the contribution of a			
$ _{A}$	×	а		force therefore will contribute to the			
				The correct relationship for net force			
				$F_{net} = W - F$			
				my is sign has been included to			
				minus sign has been included to in opposite directions.			
		F Y	MSPE	Mistake: You have identified that the			
		F. Log		drag force $\mathbf{F_d}$.			
В	×	$F_d = 65$ $F_d = 640$	×9.8	If the object is accelerating then the e			
		$F_d = 640$) N	cannot be equal to one another as N			
				object accelerates as a result of a net			
		$F_{net} = W$	-F.				
C	·	$F_d = W - F_{net}$ $F_d = (mg) - (ma)$ $F_d = (65 \times 9.8) - 60$	(g)-(ma)				
		$F_d = (65)$	$(\times 9.8) - (65 \times 0.6)$				
		$F_d = 600$	N				
		$\mathbf{F}_{\text{net}} = \mathbf{W}$	$V + \mathbf{F_d}$	You I was creedly identified that bot			
		$F_d = F_{net}$		rce contribute to the net force.			
D	×			Mistake: You have not included a m account for the forces acting in oppo			
		1 719 109 Tog	7) (× 3.6) – (65×9.8) 00 N				
		$F_d = -60$	00 N	The correct equation for net force is : $F_{net} = W - F_d$			
				net d			

	****		3000
30000000			
		/	,
		"	***
			3000
			A.
-			
300000			
\	Name of Street		À
			,
			8888
1			
\			
1	١		
	1		

	7 io	
	49	
	ag	
E	ducatio	١٥.
Y	oocan	"

	Question 15		
A	~	impulse = $mv - mu$ $1g = 10^{-3} \text{ kg}$ impulse = $(430 \times 10^{-3}) \times 29 - (430 \times 10^{-3}) \times 21$ impulse = 3.4 Ns	
В	×	impulse = $mv - mu$ impulse = $(430) \times 2 \times 21$ impulse = $(430) \times 2 \times 21$	Mistake: You had mass from g to keep the value for mass
С	ж	impulse = $(430) \times 21 - (430) \times 29$ impulse = -3.4×10^3 Ns	Mistake: You hat the mass from g multiplied the value of 10^{-3} . Additionally, you values for the finuthe wrong was the correct number of the correct
D	ж	impulse = $mv - mu$ $1g = \times 10^{-3} \text{ kg}$ impulse = (430×10^{-3}) 2. $(4.6 \times 10^{-3}) \times 29$ impulse = -2.4×10^{-3}	Mistake: You havalues for the finuthe wrong water than the wrong water than the correct numbers of the correct nu

			Question 16
Α	~	$E_p (\text{at } 10 \text{ m}) = E_{Total} = mgh$ $E_p = 0.5 \times 9.8 \times 10$ $E_p = 49 \text{ J}$ $E_k (at 2\text{ m}) = E_{Total} - E_p (\text{at } 2\text{ m})$ $E_k = 49 - 0.5 \times 9.8 \times 2$ $E_k = 39.2 \text{ J}$	
		79 Education	

		E (24.2)	Mistaka Van have incorrectly used the concernat	ion of an aver
		$E_{k}(at 2m) = E_{p}(at 2m)$	Mistake: You have incorrectly used the conservat principle. You have identified that $\mathbf{E}_{\mathbf{k}}$ is equal t	
		$E_k = mgh$		o L _p at an
		$E_k = 0.5 \times 9.8 \times 2$	stages of motion.	
		$E_k = 9.80 \mathrm{J}$	The conservation of energy state "	ě
			conserved and is the same at all s	
			The correct relationship for consc	
В	×		$E_{Total} = E_k + E_p$	
			-1otai $-k - p$	
			Therefore the relationship of the	
			$E_{Total} = E_{t}(ct2m) + E_{p}(at2m)$	
			E (at 2 m)	
			$L_{\kappa}(\text{at } 2 \text{ m}) = E_{Total} - E_{p}(\text{at } 2 \text{ m})$	
		$E_p(\text{at }10\text{ m}) = F_n$	Mistake: You have incorrectly us	
		F 79 5>! c×10	principle. You have identified th	
		E Education J	$\mathbf{E}_{ ext{total}}$ and $\mathbf{E}_{ ext{p}}$.	
		$E_{k}(at 2m) = E_{Total} + E_{p}(at 2m)$		
		$E_k = 49 + 0.5 \times 9.8 \times 2$	The correct principle of conserval total energy is conserved and is	
			country of the control of the contro	
C	×	$E_k = 58.8 \mathrm{J}$	The correct relationship for conse	
			$E_{Total} = E_k + E_p$	
			Therefore the relationship of the	
			Therefore the relationship of the $E_{Total} = E_k (at 2m) + E_p (at 2m)$	
			$D_{Total} = D_k \left(\operatorname{at} 2 \operatorname{III} \right) + D_p \left(\operatorname{at} 2 \operatorname{III} \right)$	
			$E_k(\text{at } 2 \text{ m}) = E_{Total} - E_p(\text{at } 2 \text{ m})$	
		E ((2) E ((10)	· · · · · · · · · · · · · · · · · · ·	
		$E_k(at 2m) = E_p(at 10 m)$	Mist a con have incorrectly us price in price. You have identified the	
		$E_k = mgh$	metres) is equal to $\mathbf{E}_{\mathbf{k}}$ at any stag	
		$E_k = 0.5 \times 9.8 \times 10^{\circ}$	ineties) is equal to D _k at any stag	
		F 79 ?.0.	The correct principle of conserv al	
		Education	total energy is conserved and is t	
D	×		The correct relationship for conse	
			$E_{Total} = E_k + E_p$	
			Therefore the relationship of the	
			1	
			$E_{Total} = E_k (at 2 m) + E_p (at 2 m)$	
				
			Total P	PYRIGHT
			PR	OTECTED

NSPECTON COPY

COPYRIGHT PROTECTED

			Question 17
Α	~	$\rho = \frac{m}{V}$ $\rho = \frac{(2m)}{V_2}$ $V' = \frac{(2m)V}{\rho}$ $V' = \frac{(2m)V}{m}$	
В	×	$\rho = \frac{m}{V}$ $V' = \frac{(\mathbf{m})}{\rho}$ $V' = \frac{(\mathbf{m})V}{2m}$ $V' = \frac{1}{2}V$	Mistake: You have incorrectly substitute stated in the question.
С		$\rho = \frac{m}{V}$ $\rho = \frac{(2m)}{V}$ $V' = \frac{(2m)}{\rho}$ $V = \frac{(2m)}{\rho}$ $V' = V$	Mistake: You have used an incorrect subsequation for volume V' in the fourth line. You have C' in C' C' C' C' C' C' C' C'
D	ж	$\rho = \frac{m}{V}$ $\rho = \frac{(2m)}{V'}$ $V' = \frac{(2m)}{\rho}$ $V' = \frac{(2m)}{2mV}$ $V' = \frac{1}{V}$	Mistake: You have used an incorrect sub equation for volume V in the fourth line. You have substituted $\rho = 2mV$. You should have substituted $\rho = \frac{m}{V}$
Λ	¥	$V' = \frac{1}{V}$	Question 18

 $\frac{B}{C}$

D

True

False

			Question 19
		$\mathbf{E} = \frac{1}{2} \mathbf{F} \Delta \mathbf{L}^2$	Mistake: You have included the length equation for energy when it should not
A	×	$E = \frac{1}{2} \times 56 \times (0.65 \times 10^{-2})^2$	The correct equation for energy stored in
		$E = 1.18 \times 10^{-3} \text{ J}$	CO?3
В	~	$E = \frac{1}{2}F\Delta L$ $L = \frac{1}{2}F\Delta L$ $E = 0.18 \text{ J}$	
		$E = \frac{1}{2} F \Delta L$	Mistake: You have not converted the va
C	×		to m. You should have multiplied the v centimetres, by 10^{-2} .
		$E = \frac{1}{2} \times 56 \times (0.65)$	
		E = 18.2 J	Mistake: You have not converted the va
		$E = \frac{1}{2} F \Delta L^2$	to m. You should have multiplied the v
D	×	$E = \frac{1}{2} \times 56 \times (0.65)^{2}$ E = 11.8 J	centimetres, by 10^{-2} . Additionally you have included the length
		E = 11.8 J	equation for the y when it should not
			rr equation for energy stored in
		76 1851-6	Question 20
		f couration	Mistake: You have not converted the value minutes to seconds . You should have n
A	×	$f = \frac{1}{3}$	by 60.
		$f = 0.3 \mathrm{Hz}$	
		$f = \frac{1}{T}$	Mistake: You have multiplied the perior from minutes to seconds. You should have
В	×	T 1 minute = 100 seconds	from minutes to seconds.
		$f = \frac{1}{3 \times 100} = 0.003 \text{ Hz}$	
		$f = 1 \times T$	Mistake: Vs (1) e 1. ultiplied 1 by the
С		$f = 1 \times 3 \times 60$ $f = 180 \text{ Hz}$	The correct equation is $f = \frac{1}{T}$.
		79	T.
		1 Education	
D		$f = \frac{1}{3 \times 60}$	
		f = 0.006 Hz	

Zig Zag Education Question 1

NSPECTION COPY

D *	True	
D * A * A * A *	* False	Potential difference is the work done
A * B C A A A A A A A A A	* False	The resist and a electrical device is
B	* False	rg the product of current and
B	COECIIC	Question 2
C * D *	$\frac{79}{709} = \frac{1}{1}$ $\Delta Q = \frac{500}{5}$	Mistake: You have divided time \mathbf{t} by have multiplied \mathbf{t} by \mathbf{I} . The correct equation is $\Delta Q = It$.
C * D *	$\Delta Q = 100 \text{ C}$ $\Delta Q = It$	The correct equation is $\Delta g = h$.
D *	$\Delta Q = 500 \times 5$ $\Delta Q = 2500 \text{ C}$	
D *	$\Delta \mathbf{Q} = \frac{\mathbf{I}}{\mathbf{t}}$ $\Delta Q = \frac{5}{500}$	Mistake: You have divided the current have multiplied t by I . The correct equation is $\Delta Q = It$.
	$\Delta Q = 0.01 \mathrm{C}$ $\Delta \mathbf{Q} = \mathbf{I}$	Mistake : You have identified that the The correct relationship is $\Delta Q = It$.
В 🗴	$n = \frac{\text{total } Q}{\text{charge of electron}}$ $n = \frac{24}{1.6 \times 10^{-19}}$ $n = 1.5 \times 10^{20}$	Question 3
	$n = \frac{\text{charge of electron}}{\text{total charge Q}}$ $m = \frac{1.6 \times 10^{-19}}{24}$ $n = 6.7 \times 10^{-21}$	Mistake: You have divided charge of you should have divided total charge. The correct relatic iship is: $Cotal\ Q$ charge of electron
C x		Mistake: You have divided total charge by c

COPYRIGHT PROTECTED

Zig Zag Education

Mistake: You have used an incorrect r
e . You should have used 1.6×10^{-19} .
Question 4
/ · · · ·
have multiplied W and Q when you
IA/

			$V = W \times Q$. The You have multiplied W and Q when you			
Α	×	$V = W \times Q$ $7_{0.9}$ $4 \times Q$ Education 12 V	The correct equation is $V=\dfrac{W}{Q}$.			
			Additionally, you have used an incorrect nume You have used 4 J when 40 J was the value give			
В	×	$V = W \times Q$ $V = 40 \times 3$ $V = 120 \text{ V}$	Mistake: You have multiplied W and Q when you $ \text{The correct equation is } V = \frac{W}{Q} . $			
С	ж	$V = \frac{Q}{W}$ $V = \frac{3}{40}$ $V = 0.01 \text{ V}$	Mistake : You have divided Q by W when you show the correct equation Q .			
D		V = 13.3 V				

total Q

 $n = \frac{1}{\text{charge of electron}}$

 $n = 1.5 \times 10^{-18}$

D

		V = 13.3 V			
			Question 5		
			A filament bulb is an example of a non-ohmic cond u		
A	V	False	A filament bulb does not maintain constant temper al difference and current are not directly proportional		
В	×	True			
С	×	True			
D	х	True			
Zig coloroton					

			Question 6
Α	V	$\rho = \frac{RA}{L}$ $= \frac{R4A}{2L}$ $= 2\left(\frac{RA}{L}\right)$ $= 2\rho$	
В	×	$\frac{79}{769} \frac{K}{A}$ $= \frac{R2L}{4A}$ $= \frac{1}{2} \left(\frac{RL}{A} \right)$ $= \frac{1}{2} \rho$	Mistake: You have multiplied by length L and divided by length L and multiplied by area The correct equation is $\rho = \frac{RL}{A}$.
С	x	$\rho = \frac{RA}{L}$	You have used the correct equation for resistivity. Mistake: You have not included any of the inform question in the correct equation.
D	×	$\rho = \frac{RA}{L}$ $= \frac{R4A}{L}$ $= \frac{R}{L}$ $= \frac{R}{L}$ $= \frac{R}{L}$ $= \frac{R}{L}$	You have used the correct equation for resistivity. Mistake: You have increasely substituted the leng substituted 21. The fair of length given in the quality of the length given in the length given in the quality of the length given in the quality of the length given in the length given in the length given g
			Question 7
Α	x	True	
D	v	Тино	

			Question /
A	×	True	
В	×	True	
С	×	True	
D	~	False	Superconductivity is the property of a material include below its critical temperature will result in the material includes the control of th

			Question 8
Α	×	$\mathbf{R}_{T} = \mathbf{R}_{1} + \mathbf{R}_{2} + \mathbf{R}_{3}$ $R_{T} = 16.5 + 16.5 + 16.5$ $R_{T} = 49.5 \Omega$	Mistalic 1 have used the equation $(R_T = R_1 + R_2 + R_3 +)$ as $\left(\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} +\right)$.

$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ $\frac{1}{R_T} = \frac{1}{16.5} + \frac{1}{16.5} + \frac{1}{16.5}$ $\frac{1}{R_T} = \frac{3}{16.5}$ $R_T = \frac{16.5}{3}$	
$R_{T} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}$	Mistake: You have incorrectly identi
$R_1 - \overline{R_1} + \overline{R_2} + \overline{R_3}$	is equal to the sum of the inverse res
$R_T = \frac{1}{16.5} + \frac{1}{16.5} + \frac{1}{16.5}$	identified that the inverse of the tot a
$R_T = \frac{3}{16.5}$	sum of the inverse resistances of the
$R_T = \frac{16.5}{16.5}$ $R_T = 0.18 \Omega$	The correct equation is: $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$
$\mathbf{R}_{\mathrm{T}} = \mathbf{R}_{1} = \mathbf{R}_{2} = \mathbf{R}_{3}$	Mistake: You have indicated that the
$R_T = 16.5 \Omega$	R_T is equal to the value of all of the
79	parallel circ: e carect equation is $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$
79 64 region	

		Education	Question 9	
Α	~	True		
В	ж	False	You have identified the correct direction for I_3 . Mistake: You have subtracted I_1 and I_2 to obtain the staken into consideration the conservation of current law . The conservation of current law states that the total current law to the total current flowing out of a junction. I_3 will therefore be the sum of I_3 d I_2 .	
729 Education				

COPYRIGHT **PROTECTED**

NSPECTION COPY

C

D

С			You have	e identified the correct value for $I_{\scriptscriptstyle 3}$.
			Mistake:	: You have identified the current I_3 as ${\sf enterin}_{2}$
			the case a	as it breaks the conservation of current law.
			The cons	servation of current law states that the total cu
	×	False		the total current flowing that the total current flowing the t of a junction.
				- CO13
				nd , a ring the junction then by deducti
		_	Jury -	ir conservation of current law to
		79	Mistake	: You have subtracted $I_{\scriptscriptstyle 1}$ and $I_{\scriptscriptstyle 2}$ to obtain the
		Education		To consideration the conservation of current large
				ally, you have identified the current $I_{\scriptscriptstyle 3}$ as ${\sf ent}$
			be the ca	se as it breaks the conservation of current law
D	×	False	The cons	servation of current law that states that the tota
				to the total current flowing out of a junction.
			G: I	
			_	nd I_2 are entering the junction then by deduction and are the conservation of current law to
			junction	in order for the conservation of current law to
			Therefor	e the value of ${\it I}_{ m 3}$ will be the sum of ${\it I}_{ m 1}$ and ${\it I}_{ m 2}$.
				Con 10
		I^2		
		$P = \frac{1}{R}$		A E You have divided the square of the should have multiplied the two values.
A	×	79		_
		Education 150		The correct equation is $P = I^2 R$.
		P = 2.00 m	W	
		P = IR		Mistake: You have multiplied the current I
D	×	$P = 1.5 \times 15$	50	should have multiplied the square of the cur
В	×	P = 225 W		
				The correct equation is $P = I^2 R$.
		$P = I^2 R$		
С	✓	$P = (1.5)^2 \times$	<150	
		P = 338 W		
		_p R		Mistake: You ray dided the resistance R
		$P = \frac{R}{I^2}$		when y our have multiplied the two va
D	×	$P = \frac{150}{1}$		1
		(1.5)		The correct equation is $P = I^2 R$.
		709 Education 7.0 W	<i></i>	
		1000		

NSPECTION COPY

			Question 11
A	~	True	
В	×	False 79 60colon	Mistake: You have identified the value for the internal $e.m.f.$ the wrong way round. The equation for e.m.f. of c_{2} c_{2} c_{3} : $V = \varepsilon - Ir$ c_{1} c_{2} c_{3} c_{4} c_{5} c_{5} c_{6} c_{7} c_{7
С	ж	False	You have correctly identified the value for the e.m.f. Mistake: You have identified the internal resistance as a should have identified it as the gradient . The equation for e.m.f. of source is: $V = \mathcal{E} - Ir$ Comparing to straight line equation: $y = mx + c$ Therefore $m = -r$ and $c = \mathcal{E}$.
D			V = c are comparing to straight line equation: $y = mx + c$

			Question 12
		$I = \frac{(R+r)}{}$	Mistake: You have divided the term
		E	have divided ε by $(R+r)$.
		$I = \frac{8 + 110 \times 10^{-3}}{12}$	
		I = 0.68	The relationship for e.m.f. of a source $\varepsilon = IR + Ir$
Α	×	V = IR	$\varepsilon = I(R+r)$
		$V = 0.68 \times 8 = 5.44 \text{ V}$	J=C:073
		- F(O)	$\kappa + r$
		- REPECTO	The section the second constitution (sec
		79	Therefore the correct equation for c

		$V = \varepsilon$ $V = 12.0 \text{ V}$		Mistake: You have identified that the is equal to the e.m.f. of the source.	ne terminal notential difference
		V = 12.0 V		Due to the presence of internal resis	
B	×			voltage develops across the interna	
				therefore the full e.m.f. is not availa	
				some voltage is 'lost' across the interemaining voltage supplied to the r	
				potential difference.	
		, ε		You have used the correct equation	
		$I = \frac{\varepsilon}{(R+r)}$	-	Mis ax (1) I have not converted t	
		$I = \frac{12}{(8+110)}$		\mathfrak{I}_{Ω} \mathfrak{I}_{Ω} \mathfrak{I}_{Ω} \mathfrak{I}_{Ω} You should have \mathfrak{I}_{Ω}	
С	×	$1 - \frac{1}{(8+110)}$	0)	resistance, 110 m Ω , by 10^{-3} .	
		719			
		Education ?			
		$V = 0.1 \times 8$	= 0.80 V		
		$I = \frac{\mathcal{E}}{(R+r)}$			*
		$I = \frac{12}{(8+110)}$	$\frac{2}{(1)\times 10^{-3}}$		
D		I = 1.48)×10)		
		V = IR			
		$V = 1.48 \times 8$	S = 11.8 V		
				Question 13	
A	×	True		Q, recover 10	
$\frac{1}{B}$	×	True	*		
			Wher i'e in casay	of the light incident on an LDR dec	
C		False	h. s. he LDR inci		
D	х	79 109 (e			
		Educat		Question 14	
		V_T		Mistake: You have rounded too mu	
		$I = \frac{V_T}{(R_1 + R_2)}$)	only writing I to 1 significant figure	
		$I = \frac{1}{(3.2 \times 10^{-3})}$	3 . 2 1 103		
A	×	$\begin{vmatrix} (3.2 \times 10) \\ I = 0.0009 \end{vmatrix}$	r +2.1×10°)		
		$V_1 = IR_1$			
		$V_1 = 0.0009$	$\times 3.2 \times 10^3$		COPYRIGHT
		$V_1 = 2.88 \text{ V}$		and the second	PROTECTED
		. V.		Mis' : have identified that t	
		$V_1 = \frac{V_T}{2}$ $V_1 = 2.5 \text{ V}$		rc. 's divided equally across the	
В	×	$V_1 = 2.5 \text{ V}$		This would only be the case if the	7 ig
		7.9		same, as voltage is proportional	Z ag
		Education Education		resistance values are different proportionally different.	Education
Ь		-			

			$I = \frac{V}{(R_1 + R_2)}$	Mistake: You have calculated the volta	age across R_{γ} . You should
(<i></i>	ĸ	$I = \frac{5}{(3.2 \times 10^3 + 2.1 \times 10^3)}$ $I = 0.0009$ $V_1 = V_T - IR_1$ $V_1 = 5 - 2.88 = 2.12 \text{ V}$	have calculated the voltage across R	
I) •	/	$I = \frac{V}{(R_1 + R_2)}$ $I = \frac{5}{(3.2 + 2.1) \times 10^3}$ $I = \frac{4}{(3.2 + 2.1) \times 10^3}$ $I = \frac$		SPECI
F	4	/	False	Question 15 The sum of the potential difference connected in series is equal to the te across the cell.	
I	3 ,	ĸ	True		
	g ,	ĸ	True		
I	ر ر	ĸ	True		
				Question 16	
A		ĸ	$P = \frac{V^2}{R}$ $P = \frac{5.6 \times 5.6}{2.2}$ $P = \frac{5.6 \times 5.6}{2.2}$	Mistak h ve not converted the should have multiplied to by 10 ³ .	OPY
E		_	+		
(K	$P = \frac{V}{R}$ $P = \frac{5.6}{2.2}$ $P = 2.5 \text{ W}$	Mistake: You have divided the voltyou should have divided the square resistance R . The correct equation is $P = \frac{V^2}{R}$. Additionally, you have not converte $\mathbf{k}\Omega$ to Ω . You should have multiplication $\mathbf{k}\Omega$ to \mathbf{k} .	COPYRIGH
				2.2 k Ω , by 10^3 . Mistake: Y , we divided the volt	PROTECTED

COPYRIGHT **PROTECTED**

you show have divided the square sistance R.

INSPECTION COPY

COPYRIGHT PROTECTED

D

Additionally, you have **multiplied** the

should have **divided** the power P by

The correct equation is $V = \frac{P}{I}$.

Section Two: Multiple-Choice Questio

Topic 1: Use of SI Units and their Pre

- 1. Which of the following forms represents the quantity 4 250 000 Ω ? MSPECTION COP
 - \mathbf{A} 4.25 m Ω
 - $4.25~\mathrm{M}\Omega$
 - C $4.25 p\Omega$
- 2. Which of the following are the SI base units for mass?
 - A g
 - В lb
 - C kg
 - **D** Tonnes
- Which of the following are the derived SI units for current density (J) MSPECTION COP
 - Am⁻² \mathbf{A}
 - mAm^{-2}

- 4. Which of the following are the SI base units for the amount of substance
 - A mol
 - kg
 - \mathbf{C} \mathbf{m}^3
 - D g
- 5. Which of the following represents 9.6 TJ in a form? NSPECTION
 - **A** $9.6 \times 10^6 \text{ J}$
 - В $96 \times 10^{11} \text{ J}$
 - C
 - $96 \times 10^{10} \text{ J}$

6. Which of the following statements is true?

- **A** A source of random errors can be zero error.
- **B** A source of systematic error can be inaccurate experimental method
- C Random errors and systematic errors can both easily be identified.
- D Random errors cause repeated measu em as to vary from the true amount.
- 7. Which of fine to statements is true?
 - A It is the control ossible for a measurement to have low precision and high
 - **B** Precision and accuracy are both terms that indicate how close repearmeasurements are in relation to one another.
 - C Precision is a term to describe how many repeated measurements a proximity to the true value.
 - **D** Accuracy is a term used to describe the relationship between a measure its true value.
- **8.** A student obtains the values $F = 45 \pm 1 \text{ N}$ and $m = 12.3 \pm 0.1 \text{ kg}$ in an emass of an object.

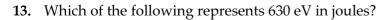
The acceleration is found using $a = \frac{F}{m}$. What is the celeration?

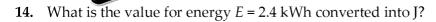
- **A** $3.7 \pm 1.4 \text{ m s}^{-2}$
- **B** $3.7 \pm 3.0 \text{ m s}^{-2}$
- C 3.7 79 ms
- **D** $3.7 \pm 0.05 \,\mathrm{m \, s^{-2}}$
- 9. Which of the following values is a valid estimate for the weight of an av
 - **A** 690–780 N
 - **B** 40–60 N
 - C 330-550 N
 - **D** 70–80 N
- **10.** An experiment has the property of reproducible.
 - A The results obtained during the ident are the same when the method is repeated or at it is also equipment is used.
 - B The peit by method can be replicated by the same experimental and the perimental by another independent experimenter.
 - C The experiment's method can be replicated by the same experimenter working independently.
 - **D** The experiment can be redone using the same method but differenthe same results are achieved.

NSPECTION COPY

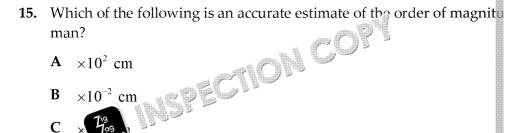
11. A student obtains the value $f = 12.9 \pm 0.5$ Hz for frequency of a simple

What is the percentage uncertainty of the value for frequency?


- **A** 0.04%
- 0.5% В
- 3.9%
- **D** 25.8%


following are the derived SI units for acceleration, given

- **A** km s⁻¹
- **B** m s⁻²
- C km s-1
- D m s-1

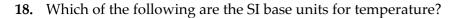


- **A** 1.01×10^{-16} J
- **B** 3.94×10^{-17} J
- C $3.94 \times 10^{21} \text{ J}$

- **A** $2.4 \times 10^3 \text{ J}$
- $1.44 \times 10^5 \text{ J}$
- $8.64 \times 10^5 \text{ J}$
- **D** $8.64 \times 10^6 \text{ J}$

STECHON COP

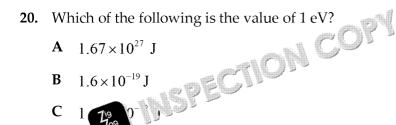
- $\mathbf{A} \times 10^2 \text{ cm}$
- $\times 10^{-2}$ cm


16. A student obtains the values $Q = 4.3 \pm 0.05 \text{ V}$ and $E = 30 \pm 1 \text{ J}$ in a

The e.m.f. is found using $\mathcal{E} = \frac{E}{O}$. What is the e.m.f.?

- $7.0 \pm 2.17 \text{ V}$
- В
- \mathbf{C}

- \mathbf{A} CV
- В Ws
- \mathbf{C} eV
- $kg m^2 s^2$ D



- Α K
- °C В
- mΚ
- D m°C

What is the speed of a space shuttle in km/s?

- **A** 8571.4 km/s
- В 857.1 km/s
- 85.71 km/s
- 8.57 km/s

- $1.67 \times 10^{27} \text{ J}$
- В $1.6 \times 10^{-19} \,\mathrm{J}$
- \mathbf{C}
- D

NSPECTION COP

- 1. Which statement is true?
 - The charge of a neutron is greater than the charge of an electron.
 - The proton and the neutron have approximally equal masses.
 - The charge of the proton is spain han the charge of an electron.
 - The mass of an desired less than the mass of a neutron but great
- neutrons are there in carbon-14 $\binom{14}{6}$ C)? **2.** How m
 - **A** 8
 - **B** 6
 - **C** 14
 - D 20
- β^- decay can be represented by the following equation:

$$_{X}^{65}$$
Ni $\rightarrow _{2}^{65}$ C $+ _{-1}^{0}e + 1$

issing values for X and Y? Which of the following are the coact

- **A** X = 30; Y = v
- C X = 28; $Y = v_a$
- **D X** = 30; **Y** = $\overline{v_a}$
- **4.** The antiparticles of the neutron and electron and their charges are prov

	Neutron	
Antiparticle	X	
Charge of Antiparticle	0	

Which of the following are the content is training values for X and Y?

- **A** X = antineutro
- putrino; Y = +e
- X = antineutron; Y = +e
- X = antineutrino; Y = e

5. The energy of a photon can be determined from E = hf.

What is the energy of a photon with frequency 8.9×10^{15} Hz?

- **A** 7.4×10^{-50} J
- **B** 1.3×10^{16} J
- C $5.9 \times 10^{-18} \text{ J}$
- $D = 1.4 \times 10^{-3} J$

ofollowing is **not** one of the four fundamental interactions?

FECTION COPY

- A Gravitational
- **B** Strong
- C Heavy
- **D** Electromagnetic

7. Which of the following statements is **not** true?

- A Mesons are a classification of leptons and baryons are a classification
- **B** Electrons, muons and neutrinos all have lepton rumber +1.
- C Baryons are made up of three quart's no sons are made up of tv
- D Pions and kaons are 1 cm'r. e cons.

quency 1.7×10^{15} Hz is incident of the surface of beryllium

The photoelectric effect causes photoelectrons to be emitted from its sur What is the maximum kinetic energy of the photoelectrons emitted from

- **A** –5 J
- **B** 3.3×10^{-19} J
- C $1.9 \times 10^{-18} \text{ J}$
- $D = 1.1 \times 10^{-18} J$

9. An electron de-excites from an excited E = -4.9 eV to a log E = -7.65 eV.

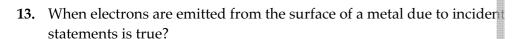
What is the frequency of the photon emitted as the electron transitions

- A 1.9 109 H
- **B** $1.2 \times 10^{34} \text{ Hz}$
- C $3.0 \times 10^{15} \text{ Hz}$
- **D** $6.6 \times 10^{14} \text{ Hz}$

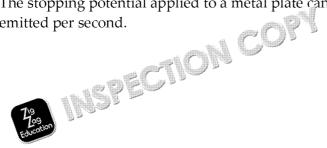
NSPECTION COPY

10. Which of the following statements is **not** true?

- All antiquarks have a baryon number of $-\frac{1}{3}$.
- Baryon number is conserved quantity.
- All quarks have a baryon number of 1.
- D A Baryon is composed of three qual (s.


- $_{2}^{3}$ He are an example of isotopes.
- Isotopes are two or more nuclei of different elements with the same different nucleon numbers.
- $^{3}_{1}H$ and $^{2}_{1}H$ are examples of hydrogen isotopes.
- **D** Isotopes are two or more nuclei of the same element with the same a different number of protons.

RECTION COP


12. An ultra-high energy gamma ray can reach energies of 1 TeV.

What is the wavelength of a gamma ray at 1 TeV?

- $1.2 \times 10^{-6} \,\mathrm{m}$
- 1.99×10^{-25} m
- $7.24 \times 10^{34} \text{ m}$

- **A** $\phi > hf$; where ϕ is the work function, h is Planck's constant and incident light.
- An electron at the surface of a metal absorbs two photons of light
- The rate of emission of electrons is proportional to the intensity of
- The stopping potential applied to a metal plate can increase the nu emitted per second.

$$\mu^{-1} \to X + Y + \nu_{\mu}$$

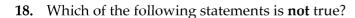
What are the missing values for **X** and **Y**?

- **A** $X = e^+; Y = v_e$
- STECTION COPY **B** $X = e^-; Y = \overline{v_e}$

- 15. In pair production, a photon forms a particle and its corresponding an What is the minimum energy of the photon required to form this part **Note:** E_0 is the rest energy of the electron.
 - $\frac{\mathbf{A}}{2}E_o$
 - В $2E_0$
 - \mathbf{C} E_o
 - $\mathbf{D} = 4E_{o}$
- A table of the fundamental in their force carriers is given be

	u.camental force	Force carri
19 109 ducation	X	pion
	Weak nuclear force	Y
	Z	photon

What the missing values for X, Y and Z?


- **X** = Gravitational; **Y** = kaon; **Z** = Strong nuclear force
- **X** = Gravitational; **Y** = W boson; **Z** = Strong nuclear force
- X = Strong nuclear force; Y = kaon; $Z = F' \times m$ gnetic force
- X = Strong nuclear force; Y = (V) ... on; Z = Electromagnetic forceMSPEC

- A X = p; $Y = v_a$
- C X = p; $Y = \overline{v}$

An ion is only produced when an electron is removed from an atom

region cort

- Alpha, beta and gamma radiation cause ionisation when they coll
- If an electron does not have sufficient energy to cause ionisation, atom.
- An ion is positively charged when an electron is removed from the

19. Which of the following statements is **not** true?

- A The exchange particle of weak nuclear for the W boson.
- Weak nuclear force cause 160) less in neutrons and protons.
- Weak nuclea exchange particle has a non-zero rest mass.
- ange particle of weak nuclear force has an extremely long

20. A photon has energy $2.7 \times 10^{-17} \text{ J}$.

What will the wavelength of the photon be with this energy?

- **A** 1.38×10^8 m
- $1.68 \times 10^{58} \text{ m}$
- 8.19×10^{-26} m
- $7.37 \times 10^{-9} \,\mathrm{m}$

Topic 3: Waves

- 1. Which of the following statements is true?
 - The frequency of a wave is dependent upon the amplitude of the w
 - One complete cycle is the maximum displace of t to the next minir
 - Amplitude of a wave is the maxin maragracement of an oscillating
 - Phase difference con a malsured in degrees and in radians.
- following is an example of a transverse wave?
 - A Sound wave
 - Electromagnetic wave
 - Stretched and compressed slinky toy
 - D Pressure wave
- 3. A transverse wave is travelling with a frequency of f = 17.9 Hz and ha What is the wave speed of the wave?
 - $3.4 \times 10^{-4} \text{ m s}^{-1}$
 - $2.98 \times 10^3 \text{ m s}^{-1}$
 - 10.74 m s^{-1} \mathbf{C}
 - $0.11\,\mathrm{m\,s^{-1}}$ D
- 4. Which ollowing statements is true?
 - A Plane of polarisation for an electromagnetic wave is the plane in wh oscillates.

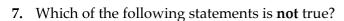
ECTION COP

- **B** If a wave is plane-polarised then it is said to only be oscillating in to
- The intensity of light passing through polarising filters can be altered relative to one another.
- **D** To plane-polarise light you need two polarising filters at right angle
- A string fixed at both ends forms a stationary wave.

The length of the string is 2.3 m.

What is the wavelength of the first? INSPEC

- **A** 4.6 m
- **B** 1.6
- C 9.2 m
- **D** 0.6 m


NSPECTION COP

6. A stationary wave is created with a string of length 132 cm which has $\mu = 0.03 \text{ kg m}^{-1}$.

The string is fixed between two points, creating a tension of 0.7 N in the What is the harmonic frequency? MSPECTION COP

- 0.06 Hz
- В 13.3 Hz
- 1.83 Hz
- D

(i is the angle of incidence and r is the angle of refraction.)

- **A** The refractive index of air is approximately 1.
- The refractive index of a substance when light goes from air into the the ratio of $\sin i$ and $\sin r$.
- C The refractive index of a substance is the ratio of the speed of sound substance to the speed of sound in a vacuum.
- **D** The ratio of $\sin i$ and $\sin r$ as a light ray crosses a boundary between is equal to the ratio between the speed of 1: 1 In each substance.
- 8. The refractive index of air is at a samately 1 and the refractive index of s figure 1. Lito a glass block at an angle of incidence of 42°. ngle of refraction of the light ray in the glass block? What is
 - **A** 30.2°
 - 0.5°
 - **C** 62.8°
 - **D** 0.89°
- **9.** Which of the following statements is **not** true?
 - **A** If i = critical angle and the incident substance has a larger refractive $r > 90^{\circ}$.
 - **B** If i > critical angle and the incide: ' uk of nice has a larger refractive then total internal reflector. "occur.
 - C If $i = \text{critical ar} \in A^{-1}$ incident substance has a larger refractive the 19 b one partial reflection.
 - **D** If *i* Education cal angle and the incident substance has a larger refractive then the light ray will refract.

10. Which of the following statements is **not** true?

- A There are no methods of preventing modal dispersion in optical file
- **B** Core cladding surrounding the core of the optical fibre is of lower than the optical fibre.
- C Modal dispersion is the lengthening of a place light undergoing total internal reflection.
- D Material dispersion sers to pulse dispersion from the use of white monochromes. At
- 11. A monochromatic light source is diffracted through a diffraction gratin.

 The light has a wavelength of 715 nm and it is observed at an angle of What is the order of the light beam?
 - **A** 4
 - **B** 3
 - **C** 1
 - **D** 2
- 12. Young's double slit experiment is used to crown an atterference patter. The experiment uses light with v_{α} and $\lambda = 650$ nm.

The fringe separation and the slit-screen distance is 4.1 m.

What 79 slipacing s?

- A 2. Education m
- **B** 4.9×10^5 m
- **C** 4.9×10^6 m
- **D** 2.1×10^{-5} m

13. Which of the following statements is **not** true?

- **A** Dark fringes are formed due to interference, when light waves are with each other.
- B Bright fringes are formed due to it to fe ence when light waves are other.
- C The fringer ('d y Young's double slit experiment are evenly s
- D If spacing increased, the fringe separation of the interference increase.

NSPECTION COPY

14. Which of the following statements is **not** true?

- **A** The shorter the wavelength of a wave, the less the waves will diffe
- **B** Reflection refers to when the angle of incidence is equal to the ang
- C Diffraction is the process of combining two weeks to create a result
- D Refraction refers to the change in viv speed and wavelength boundary.
- 15. The d 75 ween two points A and B on a transverse wave is 85 of The wavelength of the transverse wave is 1.46 m.

What is the phase difference in radians between A and B?

- **A** 366
- **B** 3.66
- **C** 0.58
- **D** 0.27

16. Which of the following statements is **not** true?

- A The frequency of a wave can be defined 2.1. 1 imber of complete per second.
- B The period is the time of 5. complete wave to pass a fixed point.
- C The ju . a wave is the number of cycles of oscillation per
- D The ducation lacement is the distance and direction from a particle's res
- 17. A stationary wave is created in a string fixed at both ends.

The frequency of the first harmonic is f_1 .

What is the frequency of the second harmonic?

- $\mathbf{A} \quad f_1$
- $\mathbf{B} = 4f_1$
- $\frac{\mathbf{C}}{2} f_1$
- $\mathbf{D} = 2f_1$

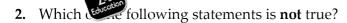
NSPECTION COPY

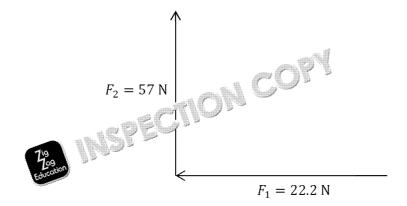
- **A** 1.17
- В 0.85
- C 0.47
- **D** 0.43

- A Light from a filament lamp is comprised of a range of wavelengths
- Vapour lamps produce light with one predominant colour.
- **C** Laser light has light that is highly monochromatic.
- D Laser beam light can permanently damage your retina if looked at the light has first been reflected.
- **20.** The period of a wave on a string is 2 minutes.

What is the frequency of the wave? MSF-CON COPY

- $0.005\,\mathrm{Hz}$
- 2 Hz
- 0.5 Hz

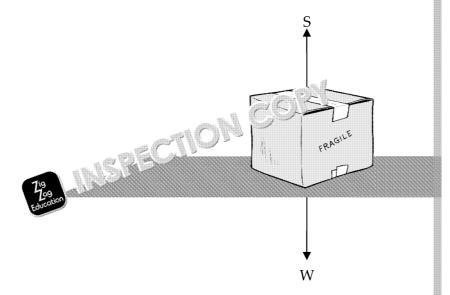

CHON COP


Topic 4: Mechanics and Materials

- 1. Which of the following quantities is **not** a scalar?
 - **A** Time
 - **B** Distance
 - **C** Temperature
 - **D** Acceleration

- **A** Acceleration is a vector and energy is a scalar.
- **B** A scalar can be defined by magnitude.
- **C** Energy and mass are both scalar quantities.
- **D** A vector can be defined by only magnitude.
- 3. Two forces acting at right-angles to each other are demonstrated below

ECHONCOPI



Which of the following rows gives the correct magnitude and direction

A		
В		
С		
D	7	
Zig Zig Salication		

4. A box is sitting at rest on a conveyor belt at a factory.

Which of the following statements is true?

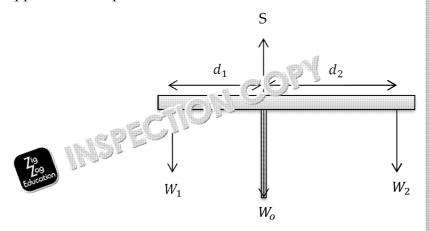
- A S > W
- $\mathbf{B} \quad S = W$
- \mathbf{C} S < W
- **D** $S \leq W$
- 5. An engineer turns a spanner with ... \ 20.00 N.

The engineer's hand it is not an the pivot

What i 79 nc 1 5.1 of the force about the pivot?

- A 21.7 Edu
- **B** $21.7 \times 10^2 \text{ Nm}$
- C 115×10^2 Nm
- **D** 115 Nm
- **6.** Which of the following statements is true?

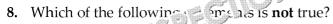
The principle of moments states that:


- A The sum of the clockwise moments is equal to a sum of the anticle
- B The sum of the clockwise more is all but opposite to the sum anticlockwise moment.
- C The service kwise moments is equal to a quarter of the sum an Townse moments.
- **D** The sum of the clockwise moments is equal to twice the sum of the moments.

NSPECTION COPY

7. Supports are being built during the construction of a house.

The supports are in equilibrium:


Which of the following statements is true for the supports to be in equil

$$\mathbf{A} \quad d_1 = \frac{W_1 d_2}{W_2}$$

$$\mathbf{B} \quad -W_1 d_1 = W_2 d_2$$

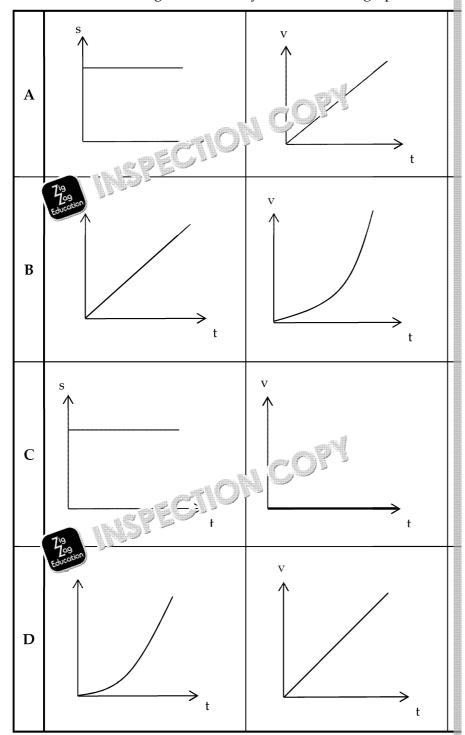
$$\mathbf{C} \qquad S = W_1 + W_2 - W_O$$

$$\mathbf{D} \quad W_2 = \frac{W_1 d_1}{d_2}$$

- cit is an object can be determined using the gradient of an
- eration of an object can be determined using the gradient graph.
- C The distance travelled by an object can be determined by the area u graph.
- **D** The displacement of an object can be determined by the area under

A cyclist sets off at 1.9 ms⁻¹.

The cyclist travels for 3 minutes and reaches 3.8 ms⁻¹.


NSPECTION COPY What is the acceleration of the cyclist?

- **A** 0.03 ms^{-2}
- **B** 1.9 ms⁻²
- $D = 0.63 \text{ ms}^{-2}$

Which of the following rows correctly identifies three graphs related

COPYRIGHT PROTECTED

11. A ball is projected horizontally off a cliff. Which the height of the Assume air resistance is negligib

- –12.5 m
- В
- **D** 23.7 m

12. Which of the following statements is **not** true?

- The horizontal velocity of a projectile changes with time if air resis
- A ball projected horizontally and a ball dropped vertically will rea same time.
- The acceleration of a projectile is always
- The horizontal motion and variation motion of a projectile are indep

13. Which of the fall of greatements is **not** true?

- sed force is proportional to the acceleration of the object.
- If a student pushed a wall with a force of 100 N, the wall will push b
- An object will experience acceleration if its speed remains constant
- **D** Newton's first law states that if no external force is applied to an o rest or continue travelling at a constant velocity.
- 14. A skydiver opens her parachute in the last stage of her jump and creat The skydiver has mass m = 57 kg and accelerates towards the ground What is the value for the drag force created by the parachute?
 - 1095 N
 - В 559 N
 - C 536 N

The football was travelling at 18 ms⁻¹ before being kicked. It leaves the opposite direction at 22 ms⁻¹.

What is the value for the impulse of the force?

- $-9.3 \times 10^{3} \text{ Ns}$
- $9.3 \times 10^{3} \text{ Ns}$
- -17.2 N s
- 17.2 Ns

16. A 0.8 kg ball is dropped from a building

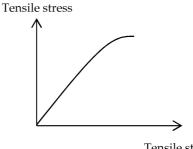
What will the king of the ball be 3 m above the ground?

В

 \mathbf{C} 86.3 J

39.2 J D

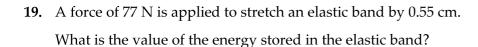
CTON COP



17. An object has a density $\rho = M/V$.

What is the volume of another object with a mass of 4M and with the

- $\mathbf{A} = 2V$
- $\mathbf{B} = \frac{1}{2}V$
- \mathbf{C} V


18. The graph below shows how the tensile stress of a material varies with

Tensile strain

How can you determine the Young modulus from the graph?

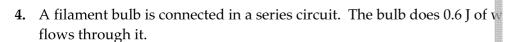
- **A** The y-intercept of the graph
- **B** The area under the graph
- C The gradient of a larght-line section of the graph
- D A. 79 ordinate on the line

- **A** 42.4 J
- **B** 21.2 J
- C 0.42 J

20. The period of a wave on a strice (s) handes

What is the frequency wave?

- A 3 79
- **B** 0.3 Hz
- C 0.006 Hz
- **D** 0.017 Hz



Topic 5: Electricity

- 1. Which of the following statements is true?
 - **A** Charge is the ratio of resistance to current.
 - The resistance of an electrical device is the any fivoltage to power
 - Potential difference is the work
 - Electric current is a conflow of electrical energy.
- heasures 6.7 mA of current flowing through an electrical circ 2. A stude What is the charge flow in the circuit?
 - **A** 2.3 C
 - $2.3 \times 10^{3} \text{ C}$ В
 - **C** 0.02 C
 - **D** 1.9×10^{-5} C
- **3.** There are 5.8×10^{20} electrons flowing in a series circuit.

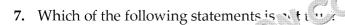
What is the value of charge flowing in the circuit when this number of MS73CTON C

- **A** 3.63×10^{39} C
- $2.76 \times 10^{-40} \text{ C}$

What is the potential difference across the bulb?

- **A** 200 V
- **B** 0.2 V
- **C** 5 V
- **D** $5 \times 10^{-3} \text{ V}$

5. Which of the following statements is **not** true?


- Ohmic conductors are components that obey Ohm's law.
- В Ohm's law states that the potential difference across a conductor current through it, if the temperature of the conductor remains cor
- Ohm's law states that the resistance of a core content is equal to the difference across the component and me of a ge flowing through
- A metal wire is an exage $f \in C$ nonmic conductor.

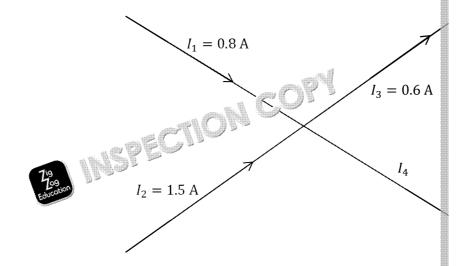
A second wire has a resistivity of 8ρ , length 2L and cross-sectional and series with a cell to determine its resistance.

What is the resistance of the second wire?

- **A** 16*R*
- R
- \mathbf{D} 4R

- A Aluminium is an expose that superconductor.
- nd is the property of a material whereby at any tem temperature the material will have zero resistivity.
- C Superconductivity is a phenomenon which occurs when metals are temperatures close to their melting points.
- D Superconductors are used in MRI and particle accelerator machines
- 8. Four 1.2 k Ω resistors are connected in parallel.

What is the total resistance of the parallel circuit?


- $\mathbf{A} = 0.3 \,\Omega$
- $4.8 \text{ k}\Omega$ В
- $300\,\Omega$
- \mathbf{D} 4.8 Ω

ZSPECTON COP

9. A junction in an electrical circuit is demonstrated below:

Which of the following rows correctly identifies the direction and value

Α	4
В	
С	
D	

tted with a heating element to take out creases in clothing

The heating element has a rate of heat transfer of 260 W. When the ire supply it has 1.2 A of current flowing through it.


What is the resistance of the heating element of the iron?

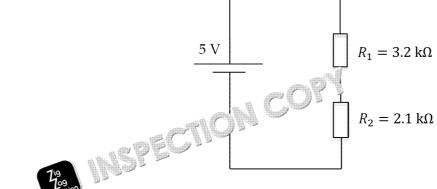
- **A** 374Ω
- 181Ω
- 217Ω
- \mathbf{D} 312 Ω

11. A student completes an experiment to determine the internal resistance. The student plots a graph of potential difference across the cell against the cell:

Which of the following rows correctly identifies how to determine the of the cell from the graph?

	Internal resistance	
Α	1 gradient	
В	gradient	
С	y-intera pt	
D	tercept	

12. A 15 Ω resister is precised in series with a cell. The e.m.f. of the cell resist. $\frac{79}{69}$ 20 m Ω .

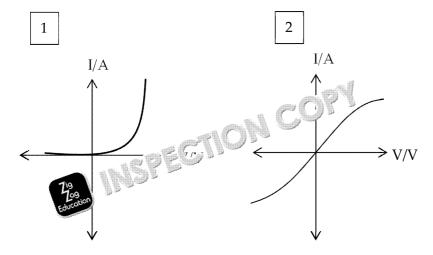

What is the terminal potential difference of the cell?

- **A** 24 V
- **B** 15.2 V
- **C** 9.5 V
- **D** 23.6 V
- **13.** Which of the following statements is **not** true?
 - **A** When the temperature of a thermistor in the potential difference thermistor increases.
 - **B** When the intensity of ne ignormalization on an LDR decreases, the the LDR in the local section of the local section of
 - C W Towns intensity of the light incident on an LDR increases, the redecreases.
 - **D** When the temperature of a thermistor increases, the resistance of

NSPECTON COPY

14. A potential divider is set up as below:

What reduced potential difference across R_2 ?


- **A** 2.0 V
- **B** 3.9 V
- **C** 2.5 V
- **D** 0.9 V
- **15.** Which of the following statements is **not** true?
 - A The current in a series circuit is the same at all points in the circuit.
 - **B** The total voltage of two bulbs in series i_1 evaluable $V_1 + V_2$.
 - C The potential difference (S) (S) correcomponent connected in paral the terminal potential difference across the cell.
 - D T' 719 l 1 . Isrance of three resistors in a parallel circuit is equal to
- **16.** A 5.3 k Ω resistor is connected in series to a cell. The potential different 16.4 V .

What is the rate of energy transfer through the resistor?

- **A** 19.7 W
- **B** 50.7 W
- **C** 0.05 W
- **D** $3.1 \times 10^{-3} \text{ W}$
- 17. Which of the following of case 6 is **not** true?
 - A The resis's semiconductor decreases as its temperature in
 - B In the positive terminal.
 - C In an insulator most electrons are connected to atoms but others a
 - D When a voltage is applied across an insulator no current passes th

18. A student plots graphs of current against potential difference for three

Which of the following rows correctly identifies the electrical componabove?

	1	2
A	Diode	Lamp
В	Metal wire	Lamp
С	Diode	Metal wire
D	Lamp	Thermistor

- 19. Which of the following statements i 1 of re.
 - A A metal has a positive tent prature coefficient as its resistance increase.
 - B TI tance of a thermistor decreases non-linearly with increase
 - C Semiconductors have a negative temperature coefficient.
 - **D** The charge carriers in a conductor travel through the conductor w potential difference is applied across the conductor.
- **20.** A bulb is connected in series with a cell with terminal potential difference flowing through the lamp is 1.2 A.

What is power output of the bulb?

- **A** 29 W
- **B** 20 W
- C 0.05 W
- D 24 M

Answers to Multiple-Choice Question

Topic 1			Topic 2		Topic 3		Topi
1	В	1	В	1	D	1	1
2	C	2	A	2	P	2	
3	Α	3	С	3	$\left[\left(\right) \right] $	3	
4	Α	4	\mathbf{S}		C	4	
5	В	7	2	5	A	5	
6	719	7.2	C	6	С	6	
7	Education	7	A	7	С	7	
8	С	8	В	8	A	8	
9	A	9	D	9	A	9	
10	С	10	С	10	A	10	
11	С	11	С	11	В	11	
12	В	12	D	12	D	12	
13	A	13	С	13	D	13	
14	D	14	В	14	С	14	
15	A	15	В	15	В	15	
16	С	16	D	16	C	16	
17	D	17	С	17	0	17	
18	A	18	A	8	В	18	
19	D	19		19	D	19	
20	P	<u> </u>	D	20	D	20	

NSPECTION COPY

