

Topic Tests for IB Physics

E. Nuclear and Quantum Physics

 ${\bf zigzage ducation.co.uk}$

POD 12407

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

← Follow us on X (Twitter) @ZigZagScience

Contents

Product Support from ZigZag Education	ii
Terms and Conditions of Use	iii
Teacher's Introduction	1
Write-on Tests	2
E.1 Structure of the atom	2
E.2 Quantum physics (Additional Higher Level)	7
E.3 Radioactive decay	10
E.4–5 Fission, fusion and stars	15
Non-write-on Tests	20
E.1 Structure of the atom	20
E.2 Quantum physics (Additional Higher Level)	23
E.3 Radioactive decay	
E.4–5 Fission, fusion and stars	29
Answers	33
E.1 Structure of the atom	33
E.2 Quantum physics (Additional Higher Level)	35
E.3 Radioactive decay	36
E.4–5 Fission, fusion and stars	38

Teacher's Introduction

These topic tests have been designed to help you and your students assess their knowledge of a topic after you have taught each part of Theme E – Nuclear and Quantum Physics (Topics E.1–E.5) of the IB Physics Diploma Programme (standard level (SL) and higher level (HL)). This part of the course includes the following topics:

- 1. Structure of the atom
- 2. Quantum physics (Additional Higher Level)
- 3. Radioactive decay
- 4. Fission
- 5. Fusion and stars

Each topic test closely follows the content of the specification and includes:

- Multiple-choice questions: These are not in exam style, and the purpose of these is to test different elements, knowledge and skills from the specification in a variety of styles. Question types include general recall, explanation of key concepts, data analysis and mathematical methods.
- **Structured-answer questions**: Where appropriate, topics may contain one or more extended-response questions to prepare students for what they might meet in the exam, and to test exam skills. Question types include long-form explanations and short-answer questions.

Mathematical skills are also covered in these topic tests.

The table below shows the content, specification reference and number of marks allocated to each test.

Topic	Test title	Marks per section (SL)	Marks per section (HL)
E 4 Characteria of	Multiple-choice questions	8	11
E.1 Structure of the atom	Structured-answer questions	21	28
the atom	Total	29	39
E.2 Quantum physics	Multiple-choice questions	-	8
(Additional Higher	Structured-answer questions	-	23
Level)	Total	-	31
	Multiple-choice questions	8	10
E.3 Radioactive decay	Structured-answer questions	10	25
	Total	18	35
E 4 Finning	Multiple-choice questions	11	11
E.4 Fission, E.5 Fusion and stars	Structured-answer questions	26	26
E.5 Tusion and stars	Total	37	37

Tests have been designed to take approximately 30–40 minutes to complete. Students are able to see the number of marks awarded for each question, allowing them to gauge the level of detail they will require for the answers. Full answers with marks are included at the end of each test. Additionally, it makes the resource a suitable tool for students to use independently.

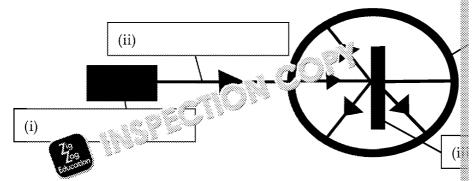
The topic tests are suitable for a classroom assessment, revision aid or homework task and are, therefore, suitable for use immediately after a topic is completed in class or at the end of teaching the course.

It is recommended that students have access to a calculator to complete the questions.

We hope you find these tests useful during your teaching.

December 2023

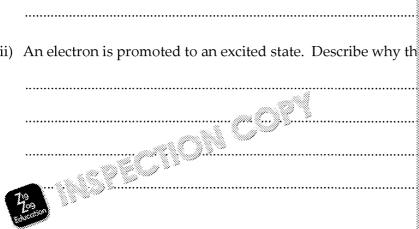
E.1 Structure of the atom


Multiple-choice questions

1.	Which of the following is the best ev	dence for the particulate nature
	A. Compton scattering	
	B. Geiger-Marsden-Rutherford exp	perimary w
	C. Rutherford scattering	
	D. Differ of the of the office of	
	D. Diffraction of participation	
2.	What cure used as evidence for the	discrete energy levels in atoms?
	A. Continuous spectrum in emissio	n and absorption spectra
	B. Line spectra in emission and abs	orption spectra
	C. The presence of protons and neu	trons in the nucleus
	D. Electrons orbiting the nucleus	
	Ü	
3.	What is the SI unit for Planck's const	ant?
	A. J m □	
	B. Kg m s ⁻¹	
	C. Js □	
	D. No units □	
	8	
4.	The Geiger–Marsdar Salard sca	ttering experiment led to what?
	A. The column the electron	
	B. Ti 73 rk model of hadrons	
	C. The discovery of the nucleus	
	D. Evidence for wave–particle dual	ity 🗆
_	TATE of the more learner of the more forms.	-1
5.	What is the nuclear notation of an all	*
	A. Nucleon number: 0, proton num	
	B. Nucleon number: 2, proton num	
	C. Nucleon number: 0, proton num	
	D. Nucleon number: 4, proton num	ber: 2 🔛
_	***	
6.	What is the velocity of a ground state	le moving in a circular or
	A. 1.19 × 10 ³ ms ⁻¹ □	
	B. 1.38 × 10 ⁷ ms ⁻¹	
	C. 2 10 06 5 🗆	
	D. 7.2 $^{-8}$ ms ⁻¹	

						**	
7.				rogen nucleus is p	romoted fror	n the ground	
		at is the diffe	erence in e	nergy?			
		-12.1 eV					
	B.	1.5 eV					
	C.	-1.5 eV					// ///
	D.	12.1 eV					
8.	Flor	ctromagnetic	radi	િં કેટાdent on a me	otal curface	If the intens	
0.		_		he number of phot		if the litteris.	
	A.	St 2 sar	S 1000		ociections.		
	В.	Doubles					\ /.
	C.	Is halved					
	D.	No photons	emitted				
		1					
Ad	ditio	onal higher	level (HI	۵)			
9.	Wh	en firing higl	h-energy a	alpha particles at a	nucleus, som	ne follow a p	Manage
	Wh	at is the reaso	on for this	?			
	A.	Electrons ha	ave a nega	tive charge			
	B.	The atom is	mainly en	npty space			
	C.			overcomes the stre	- 999000 10000	***	
	D.	The strong r	nuclear for	ce overcomes e	rc) (ignetic)	repulsion	
4.0	T.	, ,				.1	
10.				number A and rad	ius K, what i	s the nucleo	
	rad	iu: Log ve i					
	A.	A /2					
		A/2 A/4					
		A/4 A/8					
	υ.	11/0					
11.	Whi	ich of the foll	owing is t	rue when an alpha	particle is an	oproaching t	
			Ü	icle scattering expe		. 1	COPYRIGHT
	A.			t approach will alw		nderestimate	PROTECTED
	B.	The kinetic	energy of t	the alpha particle i	s equal to the	e potential er	IKOILCILD
	C.	The kinetic	energy of t	the nucleus is equa	Ac potei	ntial energy	
	D.	The distance	e of closes	t approach i "e('').	សេ the radiu	s of the nucl	
				t approach the State			7 /10
							7,9
		72				Total for s	<u>L</u> ag
		Education					Education

Structured-answer section


b)	How did this experiment lead to our understanding and develop	

Complete the table to show the properties of subatomic particles.

Subatomic particle	, arge	
Proton	(,)	
N N	0	(i
Electron	(iii)	-

(ii)	An electron is promoted to an excited state. Describe why the

a) (i) State what is meant by the ground state.

b) (i) The Bohr model is based on the hydrogen atom. Using a dia

Space for di

(ii) Calculate the energy released when an electron transitions from n = 2 state. Give your answer in joules

- 4. a) Calculate how many electron volts there are in 4.8×10^{-19} J.
 - b) Calculate the wavelength of a photon with 4.8×10^{-19} J of energy.

Additional higher level (HL)

Explain wh	ny the Bohr model of	the atom is considered t	o be a simplif
how it fails	s to describe atomic b	ehaviour.	
		. ,	
			••••••••••••
7400			
Educa			
***************************************			•••••••••
	•••••		
		ngular momentum' mea	ns in quantur
led to the c	levelopment of the B	ohr model of the atom.	
	•••••		

	••••••••	· 8	
	000000		
73.0			

Total for se

 T_0

Preview of Questions Ends Here	
Preview of Questions Ends Here This is a limited inspection copy. Sample of questions ends here to avoid students prev questions before they are set. See contents page for details of the rest of the resource.	
This is a limited inspection copy. Sample of questions ends here to avoid students prev	
This is a limited inspection copy. Sample of questions ends here to avoid students prev	

E.2 Quantum physics (Additional Higher Level)

Que	stion	Answer
		Multiple-choice questions
	1	A – Photons have a rest mass of zero
:	2	B – Photoelectric effect
:	3	C - Minimum frequency for phot el Ctr. to be released from a m
	 4	$A - 1.08 \times 10^{-19} J$
	 5	D – Diffre 3 % Si Cheerons by the double slit experiment
	6	To V.S. S. N ^y m
,	7 —	the wavelength is zero
- 1	8	$B - 1.33 \times 10^{-14} \text{m}$
		Structured-answer section
	(i)	Occupying state above the ground state [1]
1 a)		Photon collides with electron [1]. Photon has energy equal to energy
	(ii)	ground state and excited state [1].
		One-to-one interaction between photon and electron [1]
	(i)	Electrons exist in discrete energy levels [1]
		Photon must have enough energy to promote electron to higher eno
b)		n = 1: -13.6 eV [1]
	(ii)	$n = 3: \frac{-13.6}{3^2} = -1.51 \ eV \ [1]$
		ΔE = -1.51 - (-13.6) = 12.09 eV [1]
		$12.09 \text{ eV} = 12.09 \times 1.6 \times 10^{-19} = 1.93 \times 10^{-19}$
		n = 3 to $n = 1$ (largest energy,) st wavelength) NOT $n = 1$ to $n = 1$
		Languart S. Volte Y n = 3
	4	7° 3 33.0°
		4.2
2	a)	
2	aj	
		.84
		-8.4 - (-3.0) = -5.4 eV [1]
		Energy to ionise: 8.4 eV [1]
		8.4 - 2.1 = 6.3 eV [1]
b)	$6.3 \text{ eV} = 1.01 \times 10^{-18} \text{ J} [1]$
		$v = \sqrt{\frac{2E}{m}} = 1.49 \times 10^6 \text{ ms}^{-1}[1]$
		(i) Photoelectric effect [1]
		(ii) Light [1]
	3	(iii) Work frue 1'
	4	AN BE IN ANY ORDER:
		Directions [1] Velocities [1]
	_	The classical wave theory of light would predict that if the intensity
4	4	then at some point there is enough energy for emission to occur [1]
		This does not take into account that electrons only absorb energy in

	Preview of Answ		sta la alcina un avacuora ta
This is a limited inspection		ends here to stop studer	
This is a limited inspection	copy. Sample of answers	ends here to stop studer	
This is a limited inspection	copy. Sample of answers	ends here to stop studer	