

Maths Skills

for GCSE WJEC Chemistry

zigzageducation.co.uk

POD 12401

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

 ${}^{\mbox{\tiny \mathcal{T}}}$ Follow us on X (Twitter) **@ZigZagScience**

Contents

Produ	ıct Support from ZigZag Education	ii
Terms	s and Conditions of Use	iii
Teach	ner's Introduction	1
Stude	ents' Introduction	2
Diagno	ostic Test 1	3
_	Arithmetic and numerical computation	
B1	· · · · · · · · · · · · · · · · · · ·	
C1	•	
D1	- - Graphs	6
E1	Geometry and trigonometry	7
Chapte	ters	8
1	Arithmetic and numerical computation	8
	Practice Questions	13
2	Handling Data	
	Practice Questions	
3	Algebra	
4	Practice QuestionsGraphs	
4	Practice Questions	
5	Geometry and Trigonometry	
	Practice Questions	
Diagno	ostic Test 2	34
A2	Arithmetic and numerical computation	34
В2	Handling data	35
C2	Algebra	36
D2	graphs	37
E2	Geometry and trigonometry	38
Solutio	ions to Questions	39
Dia	agnostic Test 1	39
Pra	actice Questions	41
Dia	agnostic Test 2	46

Teacher's Introduction

This GCSE Maths Skills pack will help students to develop the key mathematical skills needed in studying GCSE Chemistry. The pack has been written to cover mathematical skills required by the WJEC specification.

Mathematical skills pose a challenge for many students, with some finding it difficult to see how a skill learned in a Maths lesson is applied in a Chemistry lesson. This resource has been designed to support students in making this connection. It gives a gentle, conversational review of the skill, with worked examples, and offers students the opportunity to practise the skill in isolation and then also in the context of an examination-style question.

By using this resource, students can ensure they have the skills they need for each section of the Chemistry course. They can work through the chapters proactively, or they can be directed to them as support for skills identified in class as in need of some improvement.

There are five chapters covering all the key maths skills needed for GCSE Chemistry. Each chapter contains the following elements:

- **Specification overview** this provides an overview of the skills and explains what the exam board requires students to demonstrate in the exam with the skills.
- Theoretical overview a brief summary recapping the skills and demonstrating how to apply the skills.
- **Worked examples** shows one or more fully worked questions which use the relevant skill, to demonstrate how students should approach them.
- **Practice questions** each skill is concluded with practice questions that increase in difficulty. All the chemistry knowledge needed to complete the question will be provided, and the question focuses on testing students' understanding of the maths skill itself.

The chapters cover:

- 1. Arithmetic and numerical computation
- 2. Handling data
- 3. Algebra
- 4. Graphs
- 5. Geometry and trigonometry

There are two diagnostic tests for each chapter. The first is designed to be used before you work through each chapter and is provided at the start of the resource. The second is designed to be used after reviewing the chapter's content and is provided after the main content of the resource, just before the answers. The tests will allow you to identify areas for particular focus before undertaking the work, and then afterwards, should further focus on particular areas be necessary.

Graph paper is required for Diagnostic Tests for D2.

July 2024

Students' Introduction

Mathematical skills pose a challenge for many students, with some finding it diffic a Maths lesson is applied in a Chemistry lesson. This resource has been designed connection. It gives a gentle, conversational review of the skill, with worked exam opportunity to practise the skill in isolation and then also in the context of an example.

By using these resources, you can ensure you have the skills you need for each secourse. You can work through the chapters proactively, or your teacher will direct skills that you need to improve.

There are five chapters. There are also two sets of diagnostic tests to help identified these are linked to the relevant chapters. Within each chapter, there are four elements of the set of the set

- **Specification overview** this provides an overview of the skills and explains you to demonstrate in the exam with the skills.
- Theoretical overview a brief summary recapping the skills and demonstrate
- Worked examples shows one or more fully worked questions which use the how you should approach them.
- Practice questions each skill is concluded with practice questions that incre
 chemistry knowledge needed to complete the question will be provided, and
 your understanding of the maths skill itself.

The chapters cover:

- 1. Arithmetic and numerical computation
- 2. Handling data
- 3. Algebra
- 4. Graphs
- 5. Geometry and trigonometry

There are two diagnostic tests for each chapter. The first is designed to be used be chapter. The second is designed to be used after reviewing the chapter's content identify areas for particular focus before undertaking the work, and then afterwal particular areas be necessary.

NSPECTION COPY

A1 Arithmetic and numerical computation

# \	And menerical computation
1.	Write the fraction $\frac{3}{8}$ as a decimal.
2.	Write the fraction $\frac{4}{9}$ as a decimal to three decimal places.
3.	Which of the following is the correct way to write the number 21 368 in stand A. 21.368×10^3
4.	12 moles of iron react with 18 moles of oxygen. Express the ratio 12:18 in it whole numbers).
5.	Two gases are mixed in the ratio 3:1. If the total volume of gases is $8\ dm^3$, v the two gases.
6.	Convert the decimal 0.25 to the following:
	a. a percentage:
	b. a fraction in its simplest terms
7.	A chemical weighing 1.20 g is heated, which causes its mass to reduce to 0.82 a. How much mass has been lost?
	b. Express the mass lost as a percentage of the original mass.
8.	The term 'PM _{2.5} ' refers to particles that have a maximum diameter of 2.5 μ m. particle with a maximum diameter of 0.1 μ m. Use this information to estimate is than a nanoparticle.
9.	Every time the pH of a solution increases by one unit, the concentration of H ⁺ Estimate how many times the concentration of H ⁺ ions decreases when a soluti

B 1	Handling data		
1.	Ном	many significant figures are in the following numbers?	
	a.	234.202	
	b.	0.001304	
	c.	0.070050	
2.		e the answers to these calculations. Make sure that you give the answer tes, rounding if necessary.	
	a.	1.479 + 0.3421	
	b.	12.323 – 0.85	
	c.	0.003 + 0.012	
3.		e the answers to these calculations. Make sure that you give the answer res, rounding if necessary.	
	a.	14.9 ÷ 3.0	
	b.	147 × 0.025	
	c.	3.87 × 1.575	
4.		pH of a buffer solution was measured three times. The results were: 8.4, at is the mean average pH?	
	•••••		
	•••••		
5.	minu orde Put num 98,	ass is asked to measure the rate of a reaction by counting the number of ote period. Twenty-five students each measured the number of bubbles, ser) are shown below. this data into a frequency table and from that calculate the arithmetic meber of bubbles. 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 10	
	•••••		

C₁ Algebra

1.	The rate of a chemical reaction can be defined as: rate = $1000000000000000000000000000000000000$
	The rate of a reaction is found to be $0.85~g/s$. Use this value and the equation grams of product would be formed in $15~s$.
2.	Rearrange the equation $y = 4x + 7$ to make x the subject.
3	The concentration of a solution can be calculated using the formula:

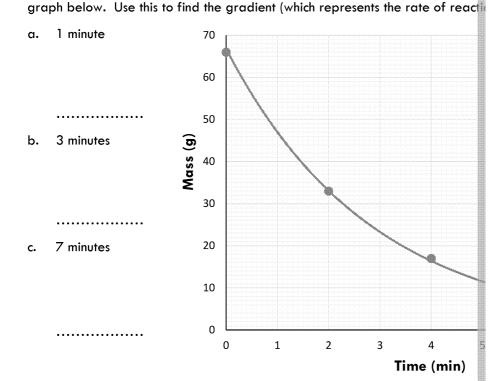
concentration of a solution can be calculated using the formula:

concentration (mol/dm 3) = $\frac{\text{number of moles of substance}}{\text{volume of solution (dm}^3}$

Calculate the concentration of a solution with a volume of 250 cm³ that contain You will need to pay careful attention to the units.

INSPECTION COPY

D1 Graphs


1. Plot the data shown in the table below on graph paper. Draw a line of best fi gradient of that line.

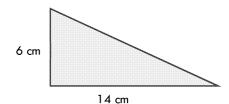
x	у
1	6.8
2	13.4
5	30.8
8	53.0
10	61.6

- 2. Use the graph that you drew in question 1 to work out the following:
 - a. what the y value would be when x = 6.5.....
 - b. what the x value would be when y = 55.....
 - c. what the value for y would be when x = 0 (you may need to extend your

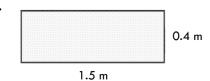
Use your answers to question 1 and question 2 part c to write an equation for form y = mx + c

A reaction is monitored by weighing the mass of the reaction flask every 2 min

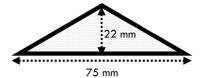
NSPECTION COPY



E1 Geometry and trigonometry


- 1. A cube has six faces. If all the sides of the cube are 15 mm long, calculate:
 - a. The volume of the cube.....
 - b. The surface area of the cube

2. Calculate the area of the following shapes.


a.

b.

c.

NOTECTION COLY

1 ARITHMETIC AND NUI COMPUTATION

SPECIFICATION OVERVIEW

Recognise and use expressions in decimal form Recognise and use expressions in standard form Use ratios, fractions and percentages Make estimates of the results of simple calculations

THEORETICAL OVERVIEW

In this section you will learn how to perform some calculations that are important in caracteristics, ratios and percentages. You will also learn how to work with numbers that

Fractions and decimals

A fraction is written as one number on top of the other. The value of a fraction is the divided by the bottom number (the *denominator*). For example: $\frac{2}{4}$ is equal to 2 divided written as a **decimal**: 0.5.

	Some common fr	actions and de	ecimals
Fraction	Decimal (to 3 decimal places)	Fraction	Dec
$\frac{4}{5}$	0.800 (0.8 exactly)	$\frac{1}{3}$	0.33
3 4	0.750 (0.75 exactly)	$\frac{1}{4}$	
$\frac{2}{3}$	0.667 (the '6' repeats infinitely)	1 5	
1/2	0.500 (0.5 exactly)	<u>1</u>	0.16
$\frac{2}{5}$	0.400 (0.4 exactly)	1 8	

Not all fractions have exact values. If you try to write $\frac{1}{3}$ as a decimal (you could try calculator) you get a string of '3's after the decimal point that only ends because the a decimal like this you will have to decide how many digits to include after the decipal places to write the number to. For example, $\frac{1}{3} = 0.33$ to two decimal places or 0.3

WORKED EXAMPLE 1

Write the fraction $\frac{4}{7}$ as a decimal. Give the answer to three decimal places.

Solution

 $4 \div 7 = 0.571$ (you should work this out using a calculator)

More digits are possible in the answer, but the question specifies that only three of should be given. You should look at the fourth decimal place (one more than asked this number. In this case the number is 0.5714. Because 4 is less than 5 you do

NSPECTION COPY

Write the fraction $\frac{7}{11}$ as a decimal. Give the answer to two decimal places.

Solution

 $7 \div 11 = 0.64$

In this case, you have been asked to give the number to two decimal places, so yo decimal place to decide how to round. The number is 0.636. You must round the 3 to 4 (always round up when the digit after the one you are rounding is 5 or by

Fractions can sometimes be simplified, i.e. written using smaller numbers. You do the denominator by the same number. This only works if you get whole numbers whethe denominator by this number.

WORKED EXAMPLE 3

The number of moles of atoms in an element is calculated using the formula: number of moles = $mass/A_r$

How many moles of beryllium are there in 6 g? (A, for beryllium = 9) Give the answer as a fraction in its simplest form.

Solution

Number of moles = $\frac{6}{9}$. This fraction can be simplified because both the numerator

divided by 3: number of moles = $\frac{62}{93}$.

Standard form

Sometimes the numbers used in chemistry can be very large (e.g. the number of atom small (e.g. the length of the bond between two atoms in a molecule). When studying to write such numbers without using very long strings of digits — many of which would

This is where **standard form** is helpful. Numbers are written in standard form as a to a power. For example:

For very large numbers, a positive value of x is used. For example, in a strip of ma (0.001 g) there are about 24.8 billion billion atoms. You could write this as 24 800 shorter way is to write it as 2.48×10^{19} . The power to which 10 is raised (+19) to need to move the decimal point to the **right** (adding zeros if necessary) to convert

For very small numbers, a negative value of x is used. The distance between the O 0.000000000097 m. You could write this as 9.7×10^{-11} m. The power to which 1 many places you need to move the decimal point to the **left** (adding zeros if necess form to a decimal.

NSPECTION COPY

Write 2437.8 in standard form.

Solution

Move the decimal point until you get a number that is at least 1 but less than 10 the decimal point moves. Multiply this decimal by 10^x where x is how many time moved. The sign of x is positive since the original number is bigger than 10 (and point to the left).

 2.4378×10^{3}

WORKED EXAMPLE 2

Write 0.0631 in standard form.

Solution

Move the decimal point until you get a number that is at least 1 but less than 10 the decimal point moves. Multiply this decimal by 10^{x} where x is how many time moved. The sign of x is negative since the original number is less than 10 (and yo point to the right).

 $= 6.31 \times 10^{-2}$

Using standard form with a calculator

When you enter a number in standard form into a calculator you do not use the normal multiply button and the '1' and '0' buttons to enter ' $\times 10^{x}$ '. There is a special button that enters ' $\times 10^{x}$ ' in one go. On some calculators it is written as $\times 10^{x}$; on others (usually older models) it is written as 'exp'. Look at the bottom of your calculator on the right-hand side.

Ratio

A ratio tells you how big a set of numbers are relative to one another, but not the

For example, if a box of pens contains black and blue pens in the ratio 2:1 this tells black pens as blue pens. It does not tell us how many pens there are of either cold

If we knew the total number of pens, we could work out how many of each there we given ratio. One way of doing this is to convert the ratio number into fractions by and using this total as the denominator, with each ratio number as the numerator. thirds because 2 + 1 = 3).

If there are 45 pens in the box, the number of black pens is $\frac{2}{3} \times 45 = 30$ and the number of black pens is $\frac{2}{3} \times 45 = 30$

Ratios can sometimes be simplified – you divide all the numbers in the ratio by the 6 moles of hydrogen react with 3 moles of oxygen to produce 6 moles of water, the 6:3:6. Since 3 can be divided into all of these numbers, the ratio can be simplified

A balanced chemical equation is written using the simplest reacting ratio of react of hydrogen and oxygen is written as $2H_2 + O_2 \rightarrow 2H_2O$ (the number '1' is never

COPYRIGHT **PROTECTED**

A dilute acid is prepared by mixing concentrated acid and water in the ratio

To prepare a total volume of 100 ml of the diluted acid, what volume of conc water should be used?

Solution

Since 1 + 9 = 10, the ratio can be written as fractions. Ratio acid:water = $\frac{1}{10}$: $\frac{1}{10}$ The volume of acid required is $\frac{1}{10} \times 100 = 10$ ml

The volume of water required is $\frac{9}{10} \times 100 = 90$ ml

(You can check the answer by making sure the two volumes add up to the total.

WORKED EXAMPLE 2

The balanced equation for the reaction of nitrogen (N₂) and hydrogen (H₂) to $N_2 + 3H_2 \rightarrow 2NH_3$

To produce 0.6 moles of NH₃, how many moles of N₂ and H₂ should be react

Solution

The balanced equation gives you the reacting ratio $N_2:H_2:NH_3 = 1:3:2$

It may be easier to think of these in two pairs. Firstly, $N_2:NH_3=1:2$, so to make 0.3 moles of N_2 (since 0.3:0.6 = 1:2).

Then, $N_2:H_2 = 1:3$. We now know that 0.3 moles of N_2 is needed, so we can work needed (because 0.3:0.9 = 1:3).

Finally, check all three amounts are in the right ratio. $N_2:H_2:NH_3 = 0.3:0.9:0.6$

Percentages

A percentage can be thought of as a fraction where the denominator is always 100 fractions with 100 on the bottom though. Instead, the symbol '%' is written after the be the numerator, the top number, if it was written as a fraction).

Thinking about percentages as fractions can sometimes help to simplify them.

For example, 25% is the same as $\frac{25}{100}$. Since we know how to simply fractions by dithing (in this case they can both be divided by 25) we can say $25\% = \frac{1}{4}$.

If you need to express a fraction as a percentage, you simply multiply it by 100. same as $\frac{7}{20} \times 100 = 35\%$.

WORKED EXAMPLE 1

A mixture of H_2 , I_2 and H_1 has a total volume of 15 ml. If the mixture contains (by volume), what is the volume of each of the three components of the mixt

Solution

If 20% of the mixture is H_2 and 20% of the mixture is I_2 , then 60% must be HI (1) These can be written as fractions and simplified: $20\% = \frac{20}{100} = \frac{1}{5}$ and $\frac{60}{100} = \frac{3}{5}$ So the volume of H_2 in the mixture is $\frac{1}{5} \times 15$ ml = 3 ml

The volume of I_2 in the mixture is also $\frac{1}{5} \times 15$ ml = 3 ml

The volume of H_2 in the mixture is also $\frac{3}{5} \times 15$ ml = 9 ml

INSPECTION COPY

The theoretical yield (the maximum possible mass) of a reaction is 0.45 g. A reaction and gets 0.33 g of product.

What is the percentage yield? Give your answer to one decimal place.

Salution

The question is asking what the amount of product that was actually made (0.33 theoretical yield (0.45 g).

You can write these numbers as a fraction and multiply by 100 (you will need to 0.45 on a calculator and then multiply this by 100): $\frac{0.33}{0.45} \times 100 = 73.33\%$, which decimal place to give 73.3%.


Estimating answers

It is not always possible or necessary to calculate exact answers. It may be that you the data that you are using in a calculation, or it may be that you do not need to keep so can estimate the answer to make the calculation easier and faster.

For example, when you are trying to understand the structure of atoms it is useful to sizes of the proton, neutron and electron, but you do not need to know the actual size a proton, a neutron and an electron is thought to be about 0.84, 0.80 and 0.001 fm

You could get your calculator out and work out exactly how much bigger one partic you need to know this? If you are just trying to get a feel for what an atom is like recognise that protons and neutrons are about the same size (and electrons are about the same size).

An example of where we do not have very precise data is working out the concentrusing universal indicator. The indicator colour tells you the pH – but only to the near need to get your calculator out and use the inverse log function to work out the concentrum of 0.1 M, pH 2 is 0.01 estimate because you do not know the pH value exactly.

WORKED EXAMPLE 1

A carbon atom has a radius of 77 pm, a nitrogen atom has a radius of 74 pm has a radius of 153 pm. Estimate the ratio of sizes of the atoms.

Solution

Because we only need to estimate an approximate answer, we can say that carbo and 74 pm) are almost the same size. The gallium atom (153 pm) is close to dou So, the ratio of the sizes of the atoms can be written as: carbon:nitrogen:gallium

WORKED EXAMPLE 2

The rate of a reaction is estimated by timing how long it takes for a colour charaction is set up, it takes 84 s for the colour to change. The reaction is repeat twice as much of one of the chemicals in the solution. This time it takes 20 s.

Estimate how many times faster the reaction becomes when the amount of the

Solution

Since 20 is approximately one quarter of 84, we can say that the reaction was fine performed the second time (with twice as much chemical in the solution).

SPECTION COPY

PRACTICE QUESTIONS

- 1. Write the number 0.4 as a fraction in its simplest terms.
- 2. In a sample of 0.40 moles of a mixture of gases there are 0.15 moles of hydronic The rest of the mixture is oxygen.
 - a. What is the ratio of hydrogen to oxygen in this mixture? Give the answer
 - b. What fraction of the total number of moles of gas is hydrogen? Write the
 - c. Convert the answer to part b to a decimal. Round the answer to 2 decimal
- 3. Write these numbers in standard form.
 - a. 0.006423
 - b. 970854
 - c. 0.0000582
- 4. The number of atoms or molecules in one mole is called the Avogadro number. Use a calculator to work out how many atoms are in 1.275×10^{-5} moles. (**HINT:** You need to multiply these two numbers together and give the final ars
- 5. A solution is made by dissolving 41 g of solid in 1.9 dm³ of water. Estimate the solution in g/dm³. Give your answer to the nearest 10 g/dm³. Do **not** use a
- 6. The theoretical yield for a reaction is 3.6 g. If a student produces 2.9 g, what percentage of the theoretical yield?
- 7. A sample of an organic compound is analysed and found to contain 0.15 mole and 0.35 moles of hydrogen atoms.
 - a. Give the ratio of moles of carbon atoms to moles of hydrogen atoms in the
 - b. What fraction of the total number of atoms are carbon atoms? Give the fr
 - c. Express the answer to part b as a percentage.
- 8. When the concentration of a strong acid increases ten times, the pH decreases solution of a strong acid is made by dissolving 5.1 g of acid in 1 dm³ of solution indicator paper, the pH is approximately 3. Estimate the mass of strong acid to use to make 1 dm³ of solution with a pH of approximately 2.
- 21% of the volume of air is oxygen. Estimate the volume of oxygen in 250 cm
 Do not use a calculator.
- 10. In an equilibrium mixture of gases, there are 0.84 moles of NO_2 and 0.28 ma
 - a. What is the ratio of moles of NO_2 to moles of N_2O_4 in its simplest terms?
 - b. What fraction of the total number of moles is N₂O₄?
 - c. Write the fraction from part b as a decimal.

NSPECTION COPY

2 HANDLING DAT

SPECIFICATION OVERVIEW

Use an appropriate number of significant figures Find arithmetic means

Construct and interpret frequency tables and diagrams, bar charts and histogram Make order of magnitude calculations

THEORETICAL OVERVIEW

In this section you will learn some important statistical processes such as how to work display data in graphical forms (such as bar charts or histograms). You will also led calculations to the correct number of decimal places or significant figures.

Significant figures and decimal places

The number of decimal places is how many digits (including zeros) are after the decout how many significant figures are in a number, count all the digits except any zero number (as soon as you count the first non-zero digit, count any zeros after that, including the sound in th

e.g. The number 0.02030 has five decimal places (five digits after the decimal point final '0'). It has four significant figures because you do not count the first two '0's (do count the '0' in the middle of the number (a **contained** or **trapped zero**) and at the contained of the number (a **contained** or **trapped zero**) and at the contained of the number (a **contained** or **trapped zero**) and at the contained of the number (a **contained** or **trapped zero**) and at the contained of the number (a **contained** or **trapped zero**) and at the contained of the number (a **contained** or **trapped zero**) and at the contained of the number (a **contained** or **trapped zero**) and at the contained or **trapped zero**) and the contained or **trapped zero**) and the contained or **trapped zero**).

When you are **adding** or **subtracting** numbers, you should give the answer to the so as the numbers you are adding or subtracting. If the numbers do not all have the so them, give your answer to the same number of decimal places as the one with the fe

When you are multiplying or dividing, you should give the answer to the same numbers you are multiplying or dividing. If the numbers do not all have the same number, give your answer to the same number of significant figures as the one with the

If the answer that you work out has more significant figures or decimal places than then you need to **round** your answer. Decide how many significant figures or decimal then look at the next digit to the right of the last one that you are going to include it then you need to 'round up' – increase the last digit by 1. If it is less than 5, do not

WORKED EXAMPLE 1

Give the answer to this calculation: 1.457 + 3.92

Be careful to give your answer to the correct number of decimal places.

Solution

1.457 + 3.92 = 5.377 (if you put it into the calculator this is what you will see) However, you should give the answer as 5.38 because the number '3.92' has only must give your answer to two decimal places. Since the digit in the third decimal you must round up.

WORKED EXAMPLE 2

Give the answer to this calculation: 10.9×1.105

Be careful to give your answer to the correct number of significant figures.

Solution

 $10.9 \times 1.105 = 12.0445$ (if you put it into the calculator this is what you will see However, you should give the answer as **12.0** because the number '10.9' has only must give your answer to three significant figures. Since the fourth significant digitary round up — but you must include the last zero (because '12' is only two significant figures).

INSPECTION COPY

The arithmetic mean

The arithmetic mean (sometimes just called 'the mean') is a type of **average** that you values. You do this by adding the numbers together and dividing by how many numbers to dividing together and dividing by how many numbers together and dividing together an

For example, if you take the temperature in your house four times during the day, temperature for that day by adding the four temperatures together and dividing

Say the temperatures that you recorded were 18 °C, 19 °C, 22 °C and 21 °C. The would be calculated like this:

average temperature =
$$\frac{18 + 19 + 22 + 21}{4} = \frac{80}{4} = 21$$

The rules about how many decimal places or significant figures to give in an arithmedepend on the data that you are working out the mean for. However, a useful guid the above example there was no question of how many significant figures to include 20) then you should give the arithmetic mean to one more significant figure than is in

Imagine you measure the temperature three times and get these values: 19 $^{\circ}$ C, 20 temperature would be calculated like this:

average temperature =
$$\frac{19 + 20 + 19}{3} = \frac{58}{3} = 19.333333$$

There is no justification (or need) for all those '3's in the answer, so applying the rule figure than the data, you should give the answer as 19.3 °C.

WORKED EXAMPLE 1

A titration is repeated until 3 concordant titres (volumes added from the burel 0.1 cm³ of one another) are obtained. These are:

Titre 1 (cm³)	Titre 2 (cm³)	Titre 3 (cm³)
12.40	12.45	12.40

Calculate the average titre. Give your answer to 2 decimal places.

Solution:

average titre=
$$\frac{12.40 + 12.45 + 12.40}{3} = \frac{37.25}{3} = 12.4166666$$

Since the question specifies that the answer must be given to 2 decimal places yo

WORKED EXAMPLE 2

A group of five students each measures the volume of gas produced by a chefirst 30 seconds. Their results are shown below. Work out the average volume

Student 1 (cm³)	Student 2 (cm³)	Student 3 (cm³)	Student 4 (c
43.4	40.5	39.8	42.9

Solution:

average volume=
$$\frac{43.4 + 40.5 + 39.8 + 42.9 + 41.1}{5} = \frac{207.7}{5} =$$

Applying the rule of using one more significant figure than the data, you should $\{and\ not\ round\ it\ to\ 41.5\ cm^3\}$.

NSPECTION COPY

A frequency table lists measurements and tells you how often each one occurs in a sneater way of displaying the data, but it can also make the process of calculating example demonstrates how to make a frequency table from a set of data.

WORKED EXAMPLE 1

You are investigating the masses of 100 cm³ beakers in a laboratory. There a beakers and you weigh all of them and record the masses. You write out the from smallest to largest, like this:

33.4 g; 33.4 g; 33.4 g; 33.4 g; 33.4 g; 33.5 g; 33.5 g; 33.6 g; 33.6 g; 33.6 g; 33.6 g; 33.6 g; 33.7 g; 33.7 g; 33.7 g; 33.7 g; 33.7 g; 33.7 g; 33.9 g; 33.8 g; 33.8 g; 33.8 g; 33.8 g; 33.8 g; 33.9 g; 33.9 g; 33.9 g;

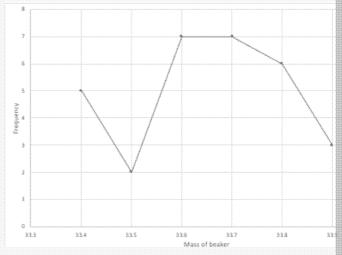
Display this data in a frequency table.

Solution:

To produce a frequency table, list all the values for the masses in one column and set of data in the next column.

Mass (g)	Frequency
33.4	5
33. <i>5</i>	2
33.6	7
33.7	7
33.8	6
33.9	3

A frequency diagram (also called a 'frequency polygon' or 'line chart') is another % To produce a frequency diagram, plot a graph with the data values on the x-axis cy-axis. You then join the points with a line.


(NOTE: this is not the same as a trend line or line of best fit – it is a line that 'joins |

WORKED EXAMPLE 2

Display this data from WORKED EXAMPLE 1 as a frequency diagram.

Solution:

Plot the data from the frequency table with mass values on the x-axis and the fr join the points with a series of straight lines.

COPYRIGHT PROTECTED

ASPECTION COP

Calculating averages from frequency tables

There are three different averages that you can work out for sets of many numbers (see p. 15) there is also the **mode**, which is the value in a set of data that occurs mo is the middle value when they are all lined up in order. If there is an even number will be two middle values. In this case you add them together and divide by two.

The mode can be found from the frequency table or diagram by looking for the variety. If there is more than one value with the highest frequency, then you should be a support of the variety of the vari

The median can also be found using the frequency table. To make it easier to see you should add an extra column with a running total of the frequency numbers (calle

WORKED EXAMPLE 1

Using the frequency table (masses of 100 cm³ beakers) from the previous sec mode (or modes) and the median average mass.

Solution:

To find the mode, look for the masses with the highest frequency or frequencies. modes: 33.6 g and 33.7 g.

To find the median, add a cumulative frequency column to the table and work of be the middle. For a total of n numbers, the middle one would be at position (n is 31 / 2 = 15.5. This means that the median number would be between the 15 sequence. Since these are both 33.7 g, the median is (33.7 + 33.7) / 2 = 33.7 g

Mass (g)	Frequency	Cumulative frequency
33.4	5	5
<i>33.5</i>	2	7
33.6	7	14
33.7	7	21
33.8	6	27
33.9	3	30

To calculate the mean, add an extra column that shows the mass multiplied by its free the numbers in this column. The mean is this total divided by the number of values in

WORKED EXAMPLE 2

Using the frequency table (masses of 100 cm³ beakers) from the previous sect mean average mass.

Solution:

Add the mass × frequency column to the table and work out the total of the numtotal mass of all 30 beakers (and you avoided having to add up all 30 numbers!). beakers (30) to get the mean.

Mass (g)	Frequency	Mass × frequency (g)
33.4	5	167
33. <i>5</i>	2	67
33.6	7	235.2
33.7	7	235.9
33.8	6	202.8
33.9	3	101.7
	Total	1009.6

1009.6 / 30 = 33.653333333

Applying the rule of using one more significant figure than the data, you should

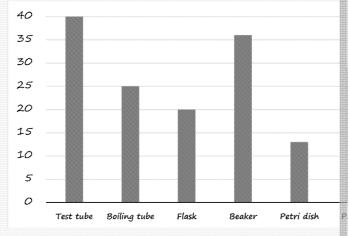
USPECTION COPY

Bar charts and histograms

Both bar charts and histograms represent frequency data using a set of bars along of the bars represents the frequency.

Bar charts are only used to represent **discrete data** (numbers that do not have interidata (names of things, such as colours or chemical elements). The bars in a bar chart any neighbouring bars to show that values between the bars are not possible.

Histograms are used when the data is **continuous** (where there can be any value, not temperature of a liquid could be 20 $^{\circ}$ C or 21 $^{\circ}$ C – or any value in between). The another to show this.


WORKED EXAMPLE 1

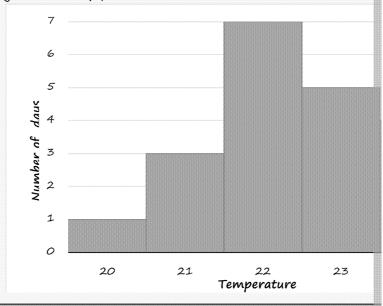
The table below shows how many of each item of laboratory equipment is it lab. Display this data using either a bar chart or a histogram, whichever is mathetype of data.

ltem	Number
Test tube	40
Boiling tube	25
Flask	20
Beaker	36
Petri dish	13
Pipette	29

Solution:

The data is categorical and so the most appropriate way to display it is using a litems can be in any order along the horizontal axis. The vertical axis needs to be fit in the highest number (40) and the bars drawn to a height that matches the

NSPECTION COPY



A student records the temperature of a classroom every day for one month. I shows how many days the room was at each temperature. Display this data chart or a histogram, whichever is most appropriate for the type of data.

Temperature °C	Number of days
20	1
21	3
22	7
23	5
24	4

Solution:

The data is continuous and so the most appropriate way to display it is using a should be displayed on a scale along the horizontal axis. The vertical axis needs to can fit in the highest number (7) and the bars drawn like this:

Calculating orders of magnitude

An order of magnitude calculation is a special type of estimation where you are try nearest multiple of ten, i.e., 1, 10, 100, 1000, etc. You could also write these numb 10^2 , 10^3 , etc.

WORKED EXAMPLE

The mass of a proton is 1.67×10^{-27} kg. The mass of an electron is 9.11×10^{-27} orders of magnitude bigger is the mass of the proton compared to the electron

Solution:

Since we are only working with orders of magnitude, we can round both numbers $1.67 \times 10^{-27} \approx 10^{-27}$ and $9.11 \times 10^{-31} \approx 10^{-30}$

Divide the mass of the proton by that of the electron using just the orders of mass $10^{-27}/10^{-30} = 10^3$ (1000 or 'three orders of magnitude')

NSPECTION COPY

PRACTICE QUESTIONS

- 1. Calculate 119.4 \div 3.21, giving your answer to the appropriate number of sign
- 2. The mass of a solid was recorded using four different balances. The results were: 12.423 g; 12.5 g; 12.46 g and 12.4 g.
 - a. Calculate the total of these masses. Give your answer to an appropriate
 - b. What is the arithmetic mean of these masses? Give your answer to two
- Five students measure the time taken for a colour change in a chemical reaction table below.

Student	1	2	3	4	
Time taken (s)	97	89	92	99	

What is the arithmetic mean average time for the reaction?

4. A class of 25 students each drops a lump of limestone into some dilute acid and of gas produced over a period of 30 seconds. Their results are shown below.

Number of bubbles =

25; 26; 26; 27; 27; 27; 28; 28; 28; 28; 29; 29; 29; 29; 29; 29; 30; 30;

- a. Produce a frequency table from this data including a column of **cumulative** column with **number of bubbles** × **frequency** in.
- b. Display this data in a frequency diagram.
- Use the frequency table to calculate the mode, median and arithmetic medbubbles produced in 30 seconds.
- Which would be the correct way of displaying the data from question 4: a ba
- 6. A survey is done of the chemicals in the laboratory stock cupboard to investigal compounds contain the elements sodium, potassium, magnesium, calcium and be the frequency table below.

Element	sodium	potassium	magnesium	calc
No. compounds	12	9	6	8

- a. Display this information in a bar chart.
- b. Why is a bar chart, and not a histogram, the correct way of displaying the
- 7. The pH of saliva samples from a group of people was measured. The results of pH = 6.5; 7.0; 6.9; 6.8; 7.1; 6.6; 7.3; 7.0; 6.9; 7.2; 6.4; 6.3; 6.9; 6.2; 7.0; 7.
 - a. Produce a frequency table from this data and use it to calculate the meding H values.
 - b. Display this information in a histogram.
- 8. One indicator of air quality is the amount of 'PM_{2.5}' particles in the air. These of no more than 2.5×10^{-6} m. These particles often get into the air as soot from ainly carbon. A carbon atom has a diameter of approximately 1.5×10^{-10} magnitude bigger is a 'PM_{2.5}' particle compared to a single carbon atom?

INSPECTION COPY

3 ALGEBRA

SPECIFICATION OVERVIEW

Change the subject of an equation

Substitute numerical values into algebraic equations using appropriate units for p

THEORETICAL OVERVIEW

In this section you will learn how to use equations in calculations, including how to reused to calculate different things.

Rearranging equations

Many equations are used in chemistry to work out quantities. For example, you can number of moles of a substance using the equation: mass = number of moles \times M_r , calculate mass you need to multiply the number of moles by M_r (the relative formula What if you know the mass and want to calculate the number of moles? To do this equation to make the number of moles the **subject** of the equation (the variable that the '=' sign).

To rearrange an equation, you perform an operation on **both** sides of the equation function involved with a term (a part of the equation) that you want to move (it must

In simple terms, if a term is being **multiplied** in an equation you can move it by **divi** by that term (because dividing is the inverse of multiplying). If a term is being **adde** by **subtracting** it from both sides of the equation (because subtracting is the inverse

WORKED EXAMPLE 1

Rearrange the equation mass = number of moles \times M_r so that it could be use number of moles from mass and M_r.

Solution:

The equation has mass as its subject, so it needs rearranging to make number of what we want to find).

We need to get the term 'number of moles' on its own. We can move the term 'pequation by it like this:

$$\frac{\text{mass}}{M_{\text{m}}} = \frac{\text{number of moles} \times M_{\text{m}}}{M_{\text{m}}}$$

The term 'Mr' on the right side of the equation vanishes since it is divided by itse

 $\frac{\text{mass}}{M_r}$ = number of moles or: number of moles = $\frac{\text{mas}}{M_t}$

WORKED EXAMPLE 2

Rearrange the equation mass number = number of protons + number of neutrons be used to calculate number of protons when the mass number and number of

Solution:

The equation has mass number as its subject, so it needs rearranging to make number this is what we want to find).

We need to get the term 'number of protons' on its own. We can move the term subtracting it from both sides of the equation by it like this:

mass number - number of neutrons = number of protons + number of neut

The term 'number of neutrons' on the right side of the equation vanishes since it

mass number - number of neutrons = number of pro

or: number of protons = mass number - number of

NSPECTION COPY

Solving equations by substitution

'Solving an equation by substitution' simply means replacing all but one of the variavalues, and then working out the value of the remaining variable.

For example, if y = 2x and you are told that x = 7, then substituting 7 for x gives

If the variable that you want to find a value for is not the subject of the equation the equation first, then make the substitutions.

WORKED EXAMPLE 1

A solution is made by dissolving 0.095 moles of substance in 0.50 dm³ of so equation concentration = $\frac{\text{number of moles}}{\text{volume}}$ to work out the concentration of the so

Solution:

Since number of moles = 0.095 and volume = 0.5 dm³, we can substitute these calculate the concentration: concentration = $\frac{0.095}{0.50}$ = 0.19 mol/dm³

WORKED EXAMPLE 2

Use the equation concentration = $\frac{\text{number of moles}}{\text{volume}}$ to work out how many moles be needed to make 0.25 dm³ of solution with a concentration of 1.5 mol/dm³

Solution:

First, we need to rearrange the equation to make the number of moles the subject volume you get: number of moles = concentration × volume.

Then you can substitute in the values: number of moles = $1.5 \times 0.25 = 0.375$ (since places in the values of number of moles and volume, we could round the answer to

Dealing with units in equations

When you work out a value by substituting numbers into an equation, you need to the with the value. These should match the units in the numbers you have used in the equation after the numbers as you substitute them into an equation.

For example, the density of a substance can be calculated from the formula density

If you are told a substance has a mass of 142 g and a volume of 200 cm³, you was

density =
$$\frac{142 \text{ g}}{200 \text{ cm}^3} = 0.710 \text{ g/cm}^3$$

WORKED EXAMPLE 1

1.26 g of a solid is dissolved in water and made up to a total volume of 30 c the equation concentration = $\frac{\text{mass}}{\text{volume}}$ to work out the concentration of the solution

Solution:

concentration = $\frac{1.26 \text{ g}}{30 \text{ cm}^3}$ = 0.042 g/cm³. The units for the answer must be g/cm³ (mol/dm³) because the units in the numbers that were substituted into the equation

When you are substituting numbers into equations, you need to be careful about the for different variables do not match, you will not get the correct answer. Sometime some numbers to make sure that they all match before carrying out the calculation

NSPECTION COPY

Here are a few unit conversions that are common in chemistry:

Quantity	Units	Но
Mass	1 kg = 1000 g	Divide by 1000 to go f
Volume	$1 \text{ dm}^3 = 1000 \text{ cm}^3$	Divide by 1000 to go f Multiply by 1000 to go
Concentration	1 mol/cm ³ = 1000 mol/dm ³ 1 g/cm ³ = 1000 g/dm ³	Divide by 1000 to go for Multiply by 1000 to go (do the same for g/cm ³
Energy	1 kJ = 1000 J	Divide by 1000 to go f

WORKED EXAMPLE 2

Use the equation number of moles = concentration \times volume to work out how substance would be needed to make 50 cm³ of solution with a concentration

Solution:

First, we need to do a unit converstion because the concentration is in a different $50 \text{ cm}^3 = 50 / 1000 \text{ dm}^3 = 0.050 \text{ dm}^3$

Then we can make the substitutions: number of moles = 0.25 mol/dm $^3 \times 0.050$ d

NSPECTION COPY

PRACTICE QUESTIONS

1. In a chemical reaction, the percentage yield can be calculated using this equal

percentage yield =
$$\frac{\text{actual mass of product}}{\text{theoretical mass of product}} \times 1$$

- a. Rearrange the equation to make actual mass of product the subject.
- b. In a reaction where the theoretical mass of product is **2.5 g** and the percewhat would the actual yield be?
- 2. The relative formula mass of a metal chloride salt (where the metal is from grotable) is calculated by adding together the relative atomic masses of the metal shown by this equation:

$$M_r = A_r(metal) + A_r(chlorine)$$

- a. Rearrange the equation to make $A_r(\text{metal})$ the subject.
- b. The relative formula mass of the compound, M_r , is **74.5**, and the relative of A_r (chlorine), is **35.5**. Use this information and your answer to part a to calcall atomic mass of the group 1 metal. Which metal is it?
- 3. The number of moles of a gas can be calculated from this equation:

$$moles = \frac{volume (dm^3)}{24 dm^3/mol}$$

A reaction produces 420 cm³ of gas.

- a. Convert the volume (420 cm³) into dm³. (HINT: there are 1000 cm³ in 1
- b. How many moles of gas were produced?
- 4. In a titration, 24.55 cm³ of a solution with a concentration of 0.150 mol/dm³ v a burette. How many moles of chemical were dispensed?

moles = concentration (mol/dm
3
) × volume (dn 3)

NSPECTON COPY

4 GRAPHS

SPECIFICATION OVERVIEW

Translate information between graphical and numeric form Plot two variables from experimental or other data Determine the slope and intercept of a linear graph Draw and use the slope of a tangent to a curve as a measure of rate of change

THEORETICAL OVERVIEW

In this section you will learn how to create graphs from data by plotting two variab graph). Graphs will be used to see data in a visual form but also to analyse data You will learn to deal with graphs that consist of straight lines as well as those with graph is related to whether the variables plotted on the graph are directly proportion By learning to measure features of graphs, such as their gradients, you will be able data that they represent.

Plotting and reading graphs

A graph consists of a set of points that are plotted in specific positions described by axes of the graph. Often the horizontal axis is referred to as the x-axis and the ver numbers on the x-axis are values of an independent variable, i.e. something that has the person collecting the data (or allowed to change naturally, e.g. time progressing values that have been measured in the experiment – these are called the dependent

A line of best fit (sometimes called a trend line) is a straight line or a curve that pa how the two variables are related. It does not have to touch all (or even any) of the line running between the points and not a 'dot-to-dot' series of lines joining them up

WORKED EXAMPLE 1

The data shown was collected by measuring the rate of a series of reactions, a different concentration of sodium hydroxide. Plot these on a graph with a

Concentration of sodium hydroxide (mol/dm³)	Rate of react
0.010	
0.020	
0.050	
0.080	
0.100	

0.350

0.200

0.250

0.200

0.150

0.100 0.050

Solution:

The independent variable is the concentration of sodium hydroxide (since this is what has been deliberately changed), so these numbers go on the x-axis with the rate of reaction on the y-axis

Title describes what the graph is showing

Both axes are labelled with the name of the variable and the units

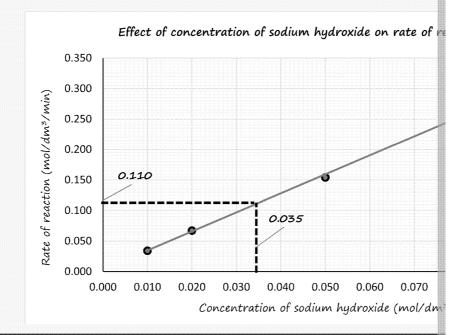
Line of best fit is through the middle

of the points (some are above and some below the line)

COPYRIGHT **PROTECTED**

Effect of concentration of sodium l

0.020 0.030


0.040 Concentration of sodil Graphs with a line of best fit can be used to convert the value of one of the variable finding the value that you know on the axis and drawing a straight line (horizontally from the x-axis) until it meets the line of best fit. Then draw another line from this perfect the value.

WORKED EXAMPLE 2

Using the graph from WORKED EXAMPLE 1, find out what the rate of reaction concentration of sodium hydroxide was 0.035 mol/dm³.

Solution:

Find 0.035 on the x-axis, draw a vertical line from this to the line of best fit, the y-axis and read the rate of reaction: 0.110 mol/dm^3 .

NSPECTION COPY

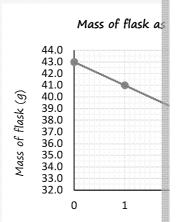
Straight line graphs

The slope (gradient) of a line can be found by dividing the change in y by the chanline (longer sections tend to give more accurate measurements). The y-intercept is for on the y-axis where the line of best fit crosses it (i.e. the value of y when x = 0).

It is important to understand what the gradient of a line means. It is a measure of hy-axis is affected by changes in the variable on the x-axis. In the worked example of best fit was steeper (had a larger gradient), it would mean that changing the conhydroxide solution had a bigger effect on the rate of reaction.

When the variable on the x-axis is **time**, the gradient of the line of best fit tells you is changing. Steep lines mean a rapid change while lines with a lower gradient ind

WORKED EXAMPLE


A reaction that releases carbon dioxide gas was set up in an open flask and every minute. Plot the data in the table below and work out the slope and the

Time (min)	0	1	2	3	
Mass of flask (g)	43	41	39	3 <i>7</i>	

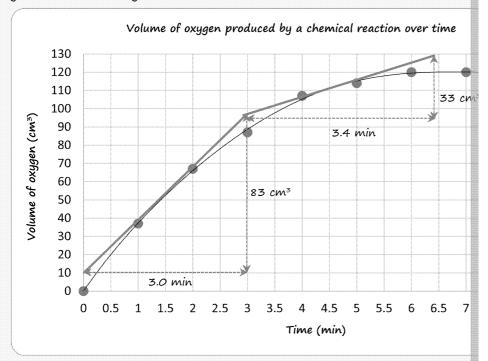
Solution:

Plot the graph and find the y-intercept: 43.0. Work out the gradient by dividing the change in y over the whole line

Gradient =
$$-10.0 g/5 min = -2 g/min$$

NSPECTION COPY

Non-linear graphs


The line of best fit in a graph is not always a straight line. For some data, the trend a curve. This means that the gradient of the line changes from point to point, and so same way as you can for a straight line. You can measure the gradient at one point tangent to that point. A tangent is a straight line that touches only one point on a cutangent is the gradient of the curve at that point only.

WORKED EXAMPLE

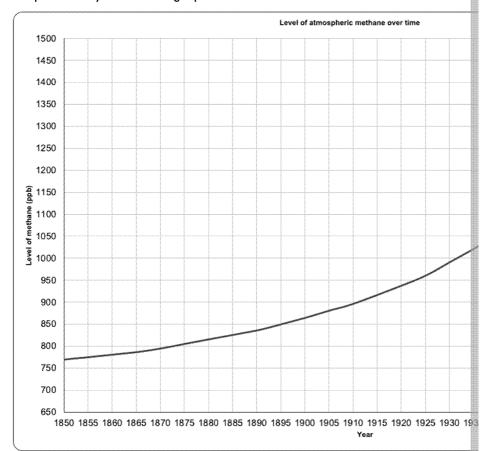
A reaction that produces oxygen gas was set, and the volume of gas produce every minute. A graph of this data is shown below. Use the graph to work or reaction (the rate of change of volume of gas) at 1.5 minutes and at 4.5 minutes.

Solution:

Since the line of best fit is a curve, you need to draw tangents to the curve at the gradient of these tangents.

At 1.5 minutes: rate of reaction = gradient = 83 cm $^3/3.0$ min = 28 cm $^3/min$ (t) At 4.5 minutes: rate of reaction = gradient = 33 cm $^3/3.4$ min = 9.7 cm $^3/min$

NSPECTION COPY


PRACTICE QUESTIONS

The rate of a chemical reaction between two gases is measured at different particle.
 The results are shown in the table below.

Pressure (atms)	1.0	1.5	2.0	2.5
Rate of reaction (mol/min)	0.63	0.94	1.25	1.61

Plot the data on a graph and add a trend line. Extend the trend line back to read off the intercept on the y-axis (the rate of reaction when pressure = 0).

2. The graph below shows how the level of methane in the atmosphere changed Describe what happens to the **rate of change** of methane levels over this time Explain how you used the graph to work this out.

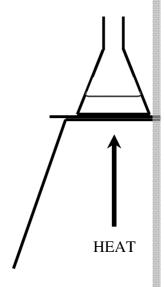
3. By drawing a tangent on the graph above, measure the rate of change of met Each division on the y-axis represents 40 ppb (parts per billion, the units of cor

NSPECTION COPY

5 GEOMETRY AND TRIGO

SPECIFICATION OVERVIEW


Visualise and represent 2D and 3D forms, including two-dimensional representat Calculate areas of triangles and rectangles, surface areas and volumes of cubes


THEORETICAL OVERVIEW

Being able to draw and interpret diagrams that represent objects is an important syou will explore some ways in which objects (including very tiny objects such as mole 2D and 3D form. You will also learn how to perform some calculations to work out and 3D shapes such as triangles, rectangles and cubes.

Representing objects in both 2D and 3D

'Real' objects are three-dimensional (3D), but a sheet of paper in a book, or your own sketch a representation of a 3D object, but sometimes it is better to draw a 2D version representation is less realistic, it can be much clearer and easier to draw and to under objects. A good example is the equipment used to heat a solution, shown below. The diagram is much simpler than the realistic image and it is easier to use this to show how

WORKED EXAMPLE 1

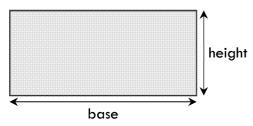
A 3D image of a molecule of methane (CH₄) is shown. Sketch out a 2D representation with all of the bond angles at 90°.

Solution:

Organic molecules are often drawn in 2D with bond angles of 90° for simplicity

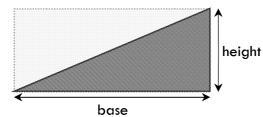
NSPECTION COPY

A 3D image of a carbon atom is shown.


Sketch out a simple 2D version, showing where the electrons are in the shells using concentric circles.

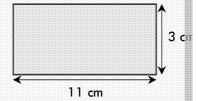
Solution:

There are two electrons orbiting closest to the nucleus and another four orbiting further out. This can be shown as:


Calculating areas of triangles and rectangles

The area of a rectangle is calculated by multiplying the length of its base by its he

$$area = base \times height$$


A triangle can be formed by dividing a rectangle in half and so the area of a trian of a rectangle. Note: the height must be measured at 90° to the base of the triangle.

$$area = \frac{1}{2} \times base \times height$$

WORKED EXAMPLE 1

Calculate the area of the rectangle shown.

Solution: $area = base \times height = 11 \text{ cm} \times 3 \text{ cm} = 33 \text{ cm}^2$

Note that because you are multiplying cm by cm, the answer is in units of cm².

USPECTION COPY

The atoms of a water molecule lie at the corners of a traingle as shown in the diagram. What is the area of this triangle?

Solution

area = $\frac{1}{2}$ base × height = $\frac{1}{2}$ × 160 pm × 60 pm = 4800 pm²

(pm is the unit picometre – it is very small but works exactly like a centimetre of area are pm²)

Calculating the surface area and volume of a cube

The volume of a cube is calculated by multiplying the length, height and width of the cube together. A cube has all sides the same length, so volume of cube= l^3 , where l is the length of all sides.

To work out the surface area of a cube, think about each of the six faces as a squawith sides of length l. The area is found by squaring l. Since there are six faces, surface area of cube = $6l^2$.

WORKED EXAMPLE 1

Calculate the volume and surface area of a cube which has sides of length 5

Solution:

volume of cube = $l^3 = (5 \text{ mm})^3 = 5 \text{ mm} \times 5 \text{ mm} \times 5 \text{ mm} = 125 \text{ mm}^3$. Note the units of volume are whichever units of length were used, but **cubed**.

surface area of cube = $6/^2 = 6 \times (5 \text{ mm})^2 = 6 \times 5 \text{ mm} \times 5 \text{ mm} = 150 \text{ mm}^2$ Note the units of surface area are whichever units of length were used, but **square**

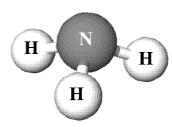
WORKED EXAMPLE 2

The cube in WORKED EXAMPLE 1 is cut in half along every side producing eight smaller cubes, each with sides of 2.5 mm.

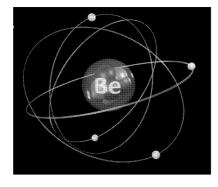
What is the total volume and total surface area of these eight cubes?

Solution:

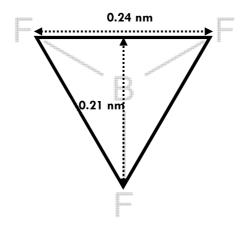
The volume of each cube is $(2.5 \text{ mm})^3 = 15.625 \text{ mm}^3$, so the total volume of a $15.625 \text{ mm}^3 \times 8 = 125 \text{ mm}^3$. This is exactly the same as the volume before the should be since none of the cube is lost and no new material is gained.


The surface area of each cube is $6 \times 2.5 \text{ mm} \times 2.5 \text{ mm} = 37.5 \text{ mm}^2$ so the total si $37.5 \text{ mm}^2 \times 8 = 300 \text{ mm}^2$. This is **double** the surface area of the single cube — but cutting it, you have exposed new surfaces. It is **always** true that when a piece of pieces, the total volume remains the same but the total surface area increases.

NSPECTION COPY



PRACTICE QUESTIONS


1. Sketch out a 2D representation of a molecule of ammonia (NH₃). The bond an same as each other but do **not** have to be the same as in the 3D model, which

2. A 3D image of a beryllium atom is shown. Sketch out a simple 2D version, shown electrons are in the shells using concentric circles.

3. The F atoms in the molecule BF₃ are at the corners of a triangle (with the B atoms shown in the diagram. Calculate the area of this triangle.

- 4. A microscope slide is a rectangle with length = 75 mm and width = 26 mm. Calc
- 5. A cube measuring 2 cm on all sides is cut into eight smaller cubes, each measur
 - a. What is the total volume of the eight small cubes?
 - b. What is the surface are of the original, larger cube?
 - c. What is the total surface area of all eight smaller cubes?

INSPECTION COPY

A2 Arithmetic and numerical computation

72	And medical computation
1.	Write the fraction $\frac{1}{6}$ as a decimal to three decimal places.
2.	Write the fraction $\frac{3}{4}$ as a decimal.
3.	Which of the following is the correct way to write the number 0.007849 in state A. 7.849×10^3 \Box B. 7.849×10^2 \Box C. 7.849×10^{-3} \Box D. 7.849×10^{-2} \Box
4.	1.8 moles of calcium react with 3.6 moles of water. Express this molar reacting
5.	Two gases are mixed in the ratio $7:2$. If the total volume of gases is $45~\rm cm^3$, the two gases.
6.	Convert the decimal 0.125 to the following:
	a. a percentage
7.	b. a fraction
	b. Express the mass gained as a percentage of the original mass.
8.	A human hair is approximately 7.0×10^{-5} m wide, and a carbon atom is abo Estimate, to the nearest one hundred thousand, how many carbon atoms could the width of a human hair.

NSPEC TON COPY

B2 Handling data

DZ	nanuling data	
1.	How many significant figures are in the following numbers?	
	a. 0.475	•••••
	b. 12.0089	••••
	c. 0.004030	•••••
2.	Give the answers to these calculations. Make sure that you give the answer places, rounding if necessary.	er t
	a. 17.925 + 0.1837	•••••
	b. 1.608 – 0.24	•••••
	c. 0.032 + 0.0073	•••••
3.	Give the answers to these calculations. Make sure that you give the answerigures, rounding if necessary.	er t
	a. 9.39 ÷ 3.0	•••••
	b. 401 × 0.125	•••••
	c. 0.264 × 12.69	•••••
4.	The temperature of a liquid was measured three times. The results were: mean average temperature?	28.
		••••
		•••••
5.	A class is asked to measure the rate of a reaction by timing how long it to Twenty students each measured the time in seconds, and their measuremer Put this data into a frequency table and from that calculate the arithmetic time for the colour change.	nts
	Time (seconds): 66, 66, 67, 67, 67, 67, 68, 68, 68, 68, 69, 69, 69, 69, 69	9, 6
		•••••
		•••••
		•••••

ZSPEC ON COPY

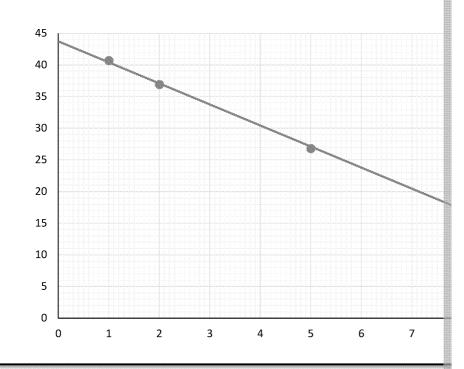
C₂ Algebra

- The concentration of a solution can be calculated using the formula: concentration use this equation to calculate how many moles of solute would be needed to a concentration of 2.50 mol/dm³.
 Rearrange the equation 4p + 2q = 2x + 6 to make x the subject.
- 3. The number of moles of a substance can be calculated using the formula:

number of moles (mol) =
$$\frac{\text{mass of substance (g)}}{M_r \text{ (g/mol)}}$$

Calculate the M_r of a substance if 24.0 moles of that substance has a mass of You will need to pay careful attention to the units.

NSPECTION COPY

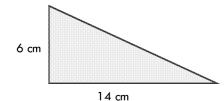

D2 Graphs

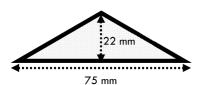
1. A wet compound is dried by heating it in a warm oven. The compound is taker and weighed. The mass of the compound (plus any remaining water) and the lare shown below.

Time (min)	Mass (g)
0	92.4
5	46.2
10	23.8
15	11.2
20	5.6

Plot the data shown in the table below on graph paper and draw a line of be drying by measuring the gradient at these times:

- a. 2 minutes
- b. 8 minutes
- c. 16 minutes.....
- 2. Use the graph shown to write an equation for the line of best fit in the form $oldsymbol{y}$




E2 Geometry and trigonometry

1. What is the area of the following shapes?

a.

b.

- 2. a. What is the volume and total surface area of a cube with sides that are
 - i) volume.....
 - ii) surface area.....
 - b. If the cube was cut into eight cubes by cutting each of the three sides in he volume and total surface area of the eight cubes?
 - i) total volume.....
 - ii) total surface area

SOLUTIONS TO QUES

DIAGNOSTIC TEST 1

A1 Arithmetic and numerical computation

- 1. 0.375
- 2. 0.444
- 3. B. 2.1368×10^4
- 4. 2:3
- 5. 3+1=4

 $8 \, dm^3 / 4 = 2 \, dm^3$

 $3 \times 2 \text{ dm}^3 = 6 \text{ dm}^3 \text{ and } 1 \times 2 \text{ dm}^3 = 2 \text{ dm}^3$

- 6. a. 25%
 - b. -
- 7. a. 1.20 g 0.84 g = 0.36 g
 - b. $(0.36 \text{ g} / 1.20 \text{ g}) \times 100 = 30\%$
- 8. Approximately 2.5 μ m / 0.1 μ m = 25 times bigger
- 9. The difference between 3.2 and 6.1 is close to 3, so the concentration of H⁺ I $10 \times 10 \times 10 = 1000$ times

B1 Handling data

- 1. a. Six
 - b. Four
 - c. Five
- 2. a. 1.821 (three decimal places)
 - b. 11.47 (two decimal places)
 - c. 0.015 (three decimal places)
- 3. a. 5.0 (4.966... rounded to two significant figures)
 - b. 3.7 (3.675 rounded to two significant figures)
 - c. 6.10 (6.09525 rounded to three significant figures)
- 4. (8.4 + 8.5 + 8.3) / 3 = 8.4

5.

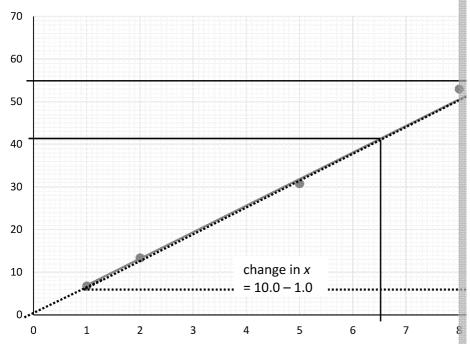
Rate (no. bubbles)	Frequency	Cumulative frequency	Rate×
98	3	3	
99	4	7	
100	6	13	
101	7	20	
102	3	23	
103	2	25	
		Total	

Mean = 2509 / 25 = 100.36 (100.4 would be acceptable)

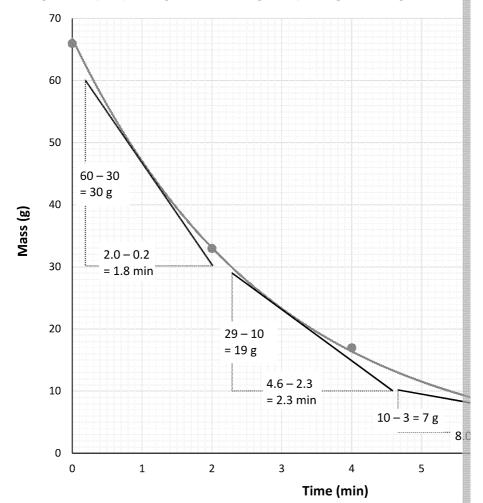
Mode = 101 (has the highest frequency)

Median = 100 (the (25 + 1) / 2 = 13th value)

C1 Algebra


- 1. Mass of product formed = rate \times time Mass of product formed = 0.85 g/s \times 15 s = 12.75 g (13 g to two significant figures)
- 2. $x = \frac{y-7}{4}$
- 3. $250 \text{ cm}^3 = 0.250 \text{ dm}^3$ concentration (mol/dm³) = $\frac{0.445 \text{ mol}}{0.250 \text{ dm}^3} = 1.78 \text{ mol/dm}^3$

INSPECTION COPY



D1 Graphs

1. Gradient = 56 / 9.0 = 6.2 (two significant figures) – allow any gradient betwee

- 2. a. y = 41 (allow 41 to 42) b. x = 8.7 (allow 8.5 to 8.7) c. y = 0
- 3. y = 6.2x + 0.7 (must use the exact values given in question 1 and question 2
- a. gradient (rate) = 30 g/1.8 min = 17 g/min (two significant figures, allow
 b. gradient (rate) = 19 g/2.3 min = 8.3 g/min (two significant figures, allow
 - c. gradient (rate) = 7.0 g/3.3 min = 2.1 g/min (two significant figures, allow

NSPECTION COPY

E1 Geometry and trigonometry

- Volume of cube = $(15 \text{ mm})^3 = 3375 \text{ mm}^3$ 1.
 - b. Surface area of cube = $6 \times 15 \text{ mm} \times 15 \text{ mm} = 1350 \text{ mm}^2$
- a. $\frac{1}{2} \times 6 \text{ cm} \times 14 \text{ cm} = 42 \text{ cm}^2$ 2.
 - b. $1.5 \text{ m} \times 0.4 \text{ m} = 0.6 \text{ m}^2$
 - c. $\frac{1}{2} \times 75 \text{ mm} \times 22 \text{ m} = 825 \text{ mm}^2$

PRACTICE QUESTIONS

Arithmetic and numerical computation

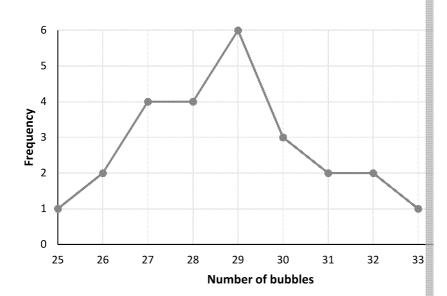
- $0.4 = \frac{4}{10} = \frac{2}{5}(1)$ 1.
- 2. Moles of oxygen = 0.40 - 0.15 = 0.25; ratio hydrogen:oxygen = 0.15:0.2

 - c. $\frac{3}{8} = 0.375 = 0.38$ (two decimal places) (1)
- a. 6.423×10^{-3} (1)
 - b. 9.70854×10^5 (1)
 - c. 5.82×10^{-5} (1)
- 4. $6.022 \times 10^{23} \times 1.275 \times 10^{-5} = 7.67805 \times 10^{18}$ (7.678 × 10¹⁸ is an acceptable a
- This is approximately $40 \text{ g/2 dm}^3 = 20 \text{ g/dm}^3$ (1)
- $\frac{2.9 \text{ g}}{2.6 \text{ g}} \times 100 = 80.55\% = 81\%$ (to two significant figures) (1) 6.
- 7. a. C:H = 0.15:0.35 = 3:7(1)
 - $\frac{0.15 \text{ moles}}{(0.15 + 0.35) \text{ moles}} = \frac{0.15 \text{ moles}}{0.50 \text{ moles}} = \frac{3}{10} \text{ (1)}$
 - $\frac{3}{10}$ × 100 = 30% (1)
- To decrease the pH by about one unit, you need approximately ten times as of solution. Since just over 5 g in 1 dm³ makes a solution with pH = 3, about 1 dm³ solution with a pH of 2. (1)
- This is easiest to do using fractions. Since the percentage is very nearly 20%, of the volume of air is oxygen. $\frac{1}{5}$ of 250 cm³ = **50 cm³**. (1)
- 10. a. $NO_2: N_2O_4 = 0.84: 0.28 = 3:1$ (1)
 - b. You could work it out without the ratio like this: $\frac{0.28}{(0.84 + 0.28)} = \frac{0.28}{1.12} = \frac{1}{4}$ but ratio: 3 + 1 = 4 so $\frac{1}{4}$ of the total number of moles is N_2O_4 (1)
 - c. $\frac{1}{4}$ = 0.25 (1)

Handling data

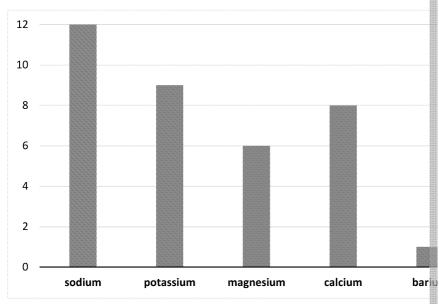
- 1. 37.2 (37.196... rounded to three significant figures) (1)
- a. 12.423 + 12.5 + 12.46 + 12.4 = **49.8** g (49.783 rounded to one decimal pl b. $\frac{49.783}{4} = 12.44575 = 12.45$ to two decimal places (1) $\frac{(97 + 89 + 92 + 99 + 95)}{5} = 94.4$ seconds (1)

NSPECTION COPY



4. a.

Number of bubbles	Frequency	Cumulative frequency	T
25	1	1	T
26	2	3	T
27	4	7	T
28	4	11	T
29	6	17	T
30	3	20	T
31	2	22	T
32	2	24	T
33	1	25	
:		Total	T


(3 - 1)

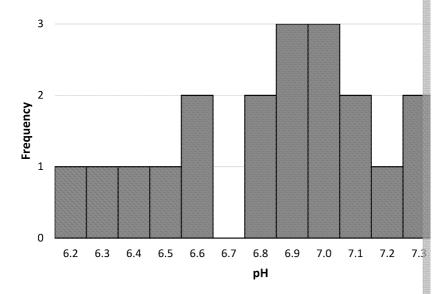
b.

- c. Mode = 29 (highest frequency) (1) Median = 29 (the $\frac{(25+1)}{2}$ = 13th number) (1) Arithmetic mean = $\frac{720}{25}$ = 28.8 (1)
- 5. Bar chart (the data is discrete, not continuous, since you cannot have a fracti

6. a.

b. Because the data is categorical (names of elements) not continuous num

Z SPECION COPY


рН	Frequency	Cumulative frequency	рН	Frequency
6.2	1	1	6.9	3
6.3	1	2	7.0	3
6.4	1	3	7.1	2
6.5	1	4	7.2	1
6.6	2	6	7.3	2
6.7	0	6	7.4	1
6.8	2	8		

(2-1) for each of frequency

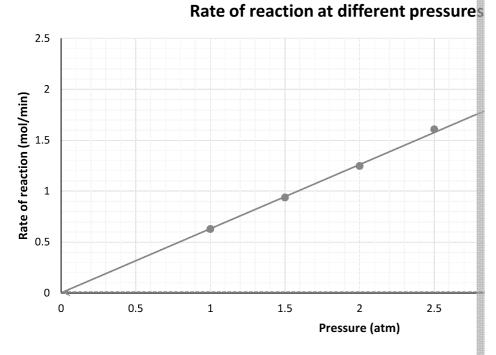
Median = **6.9** (since there is an even number of pH values, the median both of which are 6.9) (1)

There are two modes: **6.9 and 7.0** (1)

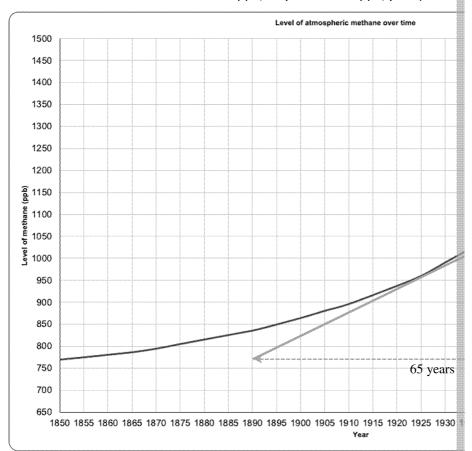
b.

8.
$$\frac{10^{-6}}{10^{-10}}$$
 = 10⁴ (10 000) (1)

Algebra


- 1. a. actual mass of product = $\frac{\text{percentage yield} \times \text{theoretical mass of product}}{100}$ (1)
 - b. actual mass of product= $\frac{59 \times 2.5 \text{ g}}{100}$ = 1.475 g (1.5 g to two significant figures
- 2. a. $A_r(metal) = M_r A_r(chlorine)$ (1)
 - b. $A_r(metal) = 74.5 35.5 = 39 (1)$ The metal is **potassium** (1)
- 3. a. $420 \text{ cm}^3 = 0.420 \text{ dm}^3 (1)$
 - b. moles = $\frac{0.420}{24}$ = 0.0175 (1) 24.55 cm³ = 0.02455 dm³ (1)
- 4. $24.55 \text{ cm}^3 = 0.02455 \text{ dm}^3$ (1) moles = $0.150 \times 0.02455 = 0.0036825 = 3.68 \times 10^{-3}$ (three significant figures)

NSPECTION COPY



Graphs

1. Correct plotting (1), trend line drawn correctly (1) Intercept at y-axis = 0

- 2. The rate of change of methane increases over the years. (1) This is shown on gets steeper over time. (1)
- 3. 1 mark for drawing the tangent as a straight line that only touches the curve 1 mark for calculating the rate of increase in methane in 1925 to be between 4.0 The rate of increase of methane = 350 ppb/65 years = 5.38 ppb/year (5.4 to the straight line that only touches the curve

Z SPECE ON CORY

Geometry and trigonometry

1. (1) for a 2D model with three H atoms attached to a central N atom

(1) for the H–N–H bond angles being approximately 120° (by eye)

₽-

2. (1) for each concentric circle with two dots (electrons) on it

3. area = $\frac{1}{2}$ × 0.24 nm × 0.21 nm = 0.0252 nm² (1) (allow rounding to two significants)

4. area = $75 \text{ mm} \times 26 \text{ mm} = 1950 \text{ mm}^2$ (1) (allow rounding to two significant fig.

5. a. You can calculate the volume of the original, larger cube since the volum cube is divided into smaller cubes. volume of cube = $(2 \text{ cm})^3 = 8 \text{ cm}^3$ (1) (It could also be done as total volume = $8 \times (1 \text{ cm})^3 = 8 \text{ cm}^3$)

b. surface area of cube = $6 \times 2 \text{ cm} \times 2 \text{ cm} = 24 \text{ cm}^2$ (1)

c. surface area of eight cubes = $8 \times 6 \times 1$ cm $\times 1$ cm = 48 cm²

NSPECTION COPY

A2 Arithmetic and numerical computation

1. 0.167

2. 0.75

3. C. 7.849×10^{-3}

4. 1:2

5. 35 cm³ and 10 cm³

6. a. 12.5%

b. -

7. a. 0.449 g

b. 54.7% (to three significant figures)

8. 200 000

B2 Handling data

1. a. Three

b. Six

c. Four

2. a. 18.109

b. 1.37

c. 0.039

3. a. 3.1

b. 50.1

c. 3.35

4. 28.93 (to four significant figures)

5.

Time (s)	Frequency	Cumulative frequency
66	2	2
67	4	6
68	4	10
69	6	16
70	3	19
71	1	20
		Total

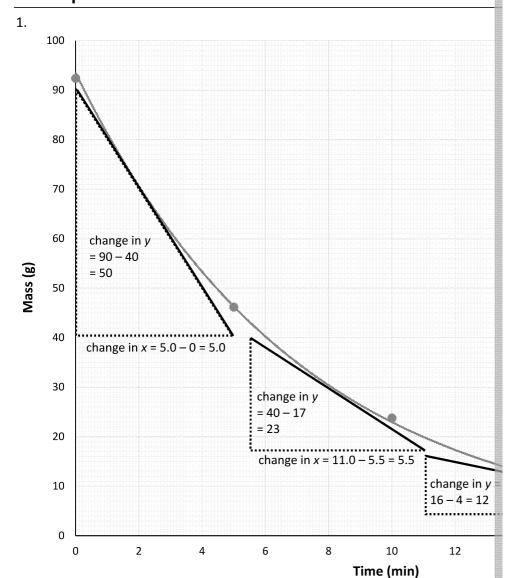
Mean = 1367 / 20 = 68.35

Mode = 69

Median (between 10^{th} and 11^{th} number in order) = (68 + 69) / 2 = 68.5

C2 Algebra

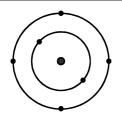
1. 1.25 moles


2. x = 2p + q - 3

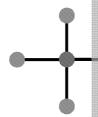
3. 180 g/mol (or 0.180 kg/mol)

NSPECTION COPY

D2 Graphs



NSPECTION COPY


- a. 50 g / 5.0 s = 10 g/s
- b. 23 g / 5.5 s = 4.2 g/s
- c. 12 g / 9.0 s = 1.3 g/s
- 2. y = -3.3x + 44

E2 Geometry and trigonometry

1. a.

b.

- 2. a. $0.5 \times 14 \text{ cm} \times 6 \text{ cm} = 42 \text{ cm}^2$
 - b. $0.5 \times 75 \text{ mm} \times 22 \text{ mm} = 825 \text{ mm}^2$
- 3. a. i) volume = $2.40 \text{ cm} \times 2.40 \text{ cm} \times 2.40 \text{ cm} = 13.8 \text{ cm}^3$ (13.824 to three
 - ii) surface area = $6 \times 2.40 \text{ cm} \times 2.40 \text{ cm} = 34.6 \text{ cm}^2$ (three significant iii)
 - b. i) volume = 13.8 cm³ (unchanged)
 - ii) surface area = $8 \times 6 \times 1.20$ cm $\times 1.20$ cm = 69.1 cm² (two significant

