

Multiple-Choice Practice Questions

For A Level (Year 2) Edexcel Chemistry

zigzageducation.co.uk

POD 11759

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

follow us on Twitter **@ZigZagScience**

Contents

Product Support from ZigZag Education	ii
Terms and Conditions of Use	iii
Teacher's Introduction	1
Student's Introduction	2
Section A Questions	3
Topic 1: Equilibrium II	3
Topic 2: Acid-Base Equilibria	5
Topic 3: Energetics II	8
Topic 4: Redox II	11
Topic 5: Transition Metals	14
Topic 6: Kinetics II	18
Topic 7: Organic Chemistry II	23
Topic 8: Organic Chemistry III	27
Topic 9: Modern Analytical Techniques II	31
Section A Quick Answers	34
Section A Full Answers	35
Section B Questions	58
Topic 1: Equilibrium II	58
Topic 2: Acid-Base Equilibria	60
Topic 3: Energetics II	63
Topic 4: Redox II	66
Topic 5: Transition Metals	70
Topic 6: Kinetics II	73
Topic 7: Organic Chemistry II	78
Topic 8: Organic Chemistry III	81
Topic 9: Modern Analytical Techniques II	84
Section B Quick Answers	87

Teacher's Introduction

For the A Level Year 2 Chemistry course, the Edexcel exam board includes a strong emphasis on multiple-choice questioning in both Paper 1 and Paper 2.

Chemistry students sometimes find the multiple-choice questions testing; the format of the questions often challenges how complete the students' understanding is of the course and requires quick and accurate problem-solving to complete all the questions in the time given.

Remember!

Always check the exam board website for new information, including changes to the specification and sample assessment material.

This multiple-choice question bank has been designed with the intention of providing students with the opportunity to review their multiple-choice skills and to practise and familiarise themselves with the questioning format with an extensive spread of multiple-choice questions from the Year 2 A Level course.

The resource is split into two sections:

Section A: Multiple-choice Question Bank 1

This section includes over 100 multiple-choice questions that span each of the topics making up the Year 2 A Level content. The questions mimic the exam style of the Edexcel exam board and reflect the depth, difficulty and format of the questions the students will face in their upcoming exam.

A mark scheme is provided at the section, which includes the answers along with worked solutions. The step-bystep solutions, and additional commentary to accompany them, give students an opportunity to identify the areas that still need improvement, and also to see where any mistakes were made and correct them for next time.

Section B: Multiple-choice Question Bank 2

This section includes another set of multiple-choice questions that similarly span each of the topics that make up the Year 2 A Level course. The questions deliberately mimic those presented to the student in Section A; this has been done so that, after working through the worked solutions of Section A, students can complete another set of questions and directly compare their attempts. The format allows students to correct their mistakes from Section A, identify areas where they have improved their understanding and highlight areas that still require further work.

A mark scheme for Section B is also provided at the end of the section. The mark scheme does not include worked solutions.

June 2022

Student's Introduction

Aim:

This pack is designed to help you practice your multiple-choice questions and, we you to build effective strategies for completing these questions. Multiple-choice Paper 2, and this pack aims to provide you with the tools to confidently tackle the

Structure

The pack is comprised of two sections. Each section contains over 100 multiple-structure and level of the questions you will see in your exam. The questions of areas that make up the A Level Year 2 Chemistry content:

- Physical Chemistry
- Organic Chemistry
- Inorganic Chemistry

After the questions, there are two sections of answers. The answers to Section Additional commentary that indicates where you went wrong and provides an inshould have been approached. This will allow you to identify your mistakes and tackle future questions. The answers to Section B do not provide any worked so

How to use this pack:

- You should first complete the questions in Section A.
- After you have completed the questions, you can then proceed by self-mark worked answers and commentary given in the answers section. You should Section A, taking note of your mistakes and ensuring that you understand w continuing with Section B.
- After completing Section B, you can proceed by self-marking your solutions
 Additionally, you can compare your answers to those obtained in Section A
 improved your skills and identify areas that still need further work.

Section A Questions

Topic 1: Equilibrium II

1. The following statements are definitions of terms related to gas-phase. They may or may not be correct.

Which of the following statements is/are true?

- 1: The *mole fractions* of all of the components in a mixture of gases r
- 2: The partial pressures of all of the components in a mixture of gase
- 3: The *partial pressure* of any single component in a mixture of gases the *mole fraction* of that component by the total pressure of the gases
- **A** 1, 2 and 3
- B Only 1 and 2
- C Only 1 and 3
- D Only 3
- 2. Hydrogen iodide forms an equilibrium mixture with the elements hy

$$2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)} \Delta H = +ve$$

Which of the following would cause the position of equilibrium to mo

- A An increase in temperature at constant pressure
- **B** A decrease in temperature at constant pressure
- C An increase in pressure at constant temperature
- D A decrease in pressure at constant temperature
- 3. In the following equilibrium, all of the chemicals are gases:

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

When equilibrium is reached, the mole fractions of PCl₃ and Cl₂ are b of the system is 102.0 kPa. Which of the following shows the correct chemicals?

- A $PCl_5 = 38.25 \text{ kPa}$; $PCl_3 = 38.25 \text{ kPa}$; $Cl_2 = 38.25 \text{ kPa}$
- **B** $PCl_5 = 34.00 \text{ kPa}$; $PCl_3 = 34.00 \text{ kPa}$; $Cl_2 = 34.00 \text{ kPa}$
- C $PCl_5 = 0.2500 \text{ kPa}$; $PCl_3 = 0.3750 \text{ kPa}$; $Cl_2 = 0.3750 \text{ kPa}$
- **D** $PCl_5 = 25.50 \text{ kPa}$; $PCl_3 = 38.25 \text{ kPa}$; $Cl_2 = 38.25 \text{ kPa}$
- 4. Which is the correct expression for K_P for the following reaction?

$$2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$$

$$\mathbf{A} \qquad K_p = \frac{p_{NH_3}}{p_{N_2}p_{H_2}}$$

$$\mathbf{B} \qquad K_p = \frac{p_{N_2} p_{H_2}}{p_{NH_3}}$$

$$\mathbf{C} \qquad K_p = \frac{p_{N_2}(p_{H_2})^3}{(p_{NH_2})^2}$$

$$\mathbf{D} \qquad K_p = \frac{(p_{NH_3})^2}{p_{N_2}(p_{H_2})^3}$$

5. Dinitrogen tetroxide forms an equilibrium mixture with its decompodioxide, as shown by the following equation:

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

At 50 °C the equilibrium constant $K_p = 283$ kPa. If the partial pressure the partial pressure of NO₂?

- A 39100 kPa
- **B** 198 kPa
- C 0.698 kPa
- **D** 0.488 kPa
- 6. Which of the following statements correctly describes the effect of adequilibrium reaction?
 - **A** The reaction will take the same amount of time to reach a state of of K_P and the position of equilibrium will be unaffected
 - **B** The reaction will reach a state of equilibrium in a shorter time; the unaffected but the position of equilibrium will be different.
 - C The reaction will take the same amount of time to reach a state of of K_P and the position of equilibrium will be different.
 - D The reaction will reach a state of equilibrium in a shorter time; the position of equilibrium will be unaffected
- 7. Changes in conditions can affect chemical equilibria and may cause to constant to change. Which of the following statements correctly descretemperature and pressure and the presence of a catalyst affect the following statements.

$$2SO_2(g) + O_2(g) = 2SO_3(g) \Delta H = -198 \text{ kJ m}$$

- **A** K_P will: decrease with increasing temperature
 - increase with increasing pressure
 - be unchanged if a catalyst is added
- **B** K_p will: decrease with increasing temperature
 - increase with increasing pressure
 - increase if a catalyst is added
- C K_p will: decrease with increasing temperature
 - be unchanged with increasing pressure
 - be unchanged if a catalyst is added
- **D** K_p will: increase with increasing temperature
 - be unchanged with increasing pressure
 - be unchanged if a catalyst is added

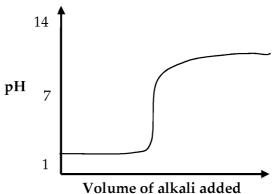
Topic 2: Acid-Base Equilibria

- 1. Which of the following statements about aqueous acids and bases is/
 - 1: Brønsted–Lowry acids are proton acceptors.
 - 2: Ammonia, NH₃, is a Brønsted–Lowry acid.
 - 3: Brønsted-Lowry bases are defined as sources of OH- ions.
 - A Only 1
 - B Only 1 and 2
 - C Only 2 and 3
 - **D** None of the statements
- 2. Which of the following is not a Brønsted–Lowry acid–base reaction?
 - **A** $H_3PO_4 + H_2O \rightleftharpoons H_2PO_4 + H_3O +$
 - $\mathbf{B} \quad \mathbf{C}_2\mathbf{H}_4 + \mathbf{H}_2 \rightarrow \mathbf{C}_2\mathbf{H}_6$
 - C $H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + 2H_2O$
 - **D** $2HCl + MgO \rightarrow MgCl_2 + H_2O$
- 3. Which of the following is the correct mathematical expression for the K_a, for a solution of a *monoprotic* weak acid (i.e. a weak acid where ea more than one H⁺ ion) with the formula C₆H₅OH?

$$\mathbf{A} \quad K_a = \frac{[H^+]^2}{[C_6 \mathbf{H}_5 O H]}$$

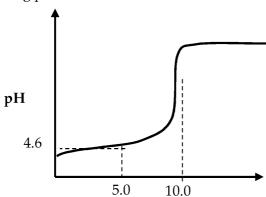
$$\mathbf{B} \quad K_a = \frac{[H^+]}{[C_6 \mathbf{H}_5 O H]}$$

$$C K_a = \frac{[C_6 H_5 O H]}{[H^+]}$$


$$\mathbf{D} \quad K_a = \frac{[C_6 H_5 O H]}{[H^+]^2}$$

- 4. Which of the following statements about the ionic product of water,
 - 1: K_w has a constant value that does not change.
 - 2: K_w is defined mathematically as [H⁺][OH⁻].
 - 3: K_w is a small number because water does not significantly di
 - A Only 1
 - B Only 1 and 2
 - C Only 2 and 3
 - **D** 1, 2 and 3

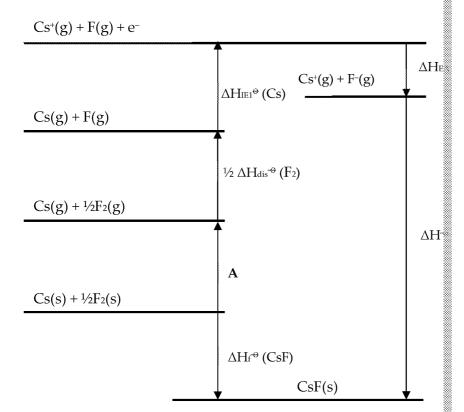
- 5. What is the pH of a solution of H₂SO₄ with a concentration of 0.1 m
 - **A** 1
 - **B** 0.7
 - **C** -1
 - **D** -0.7
- 6. If a solution of a strong *monoprotic* acid (i.e. an acid that dissociates t mole of acid molecule) has a pH of 1.3, what is the concentration of t
 - A 0.050 mol dm⁻³
 - **B** 20 mol dm⁻³
 - C 0.11 mol dm⁻³
 - **D** 13 mol dm⁻³
- 7. What is the pH of a solution of sodium hydroxide with a concentrat
 - **A** 2.6
 - **B** 16.6
 - **C** 12
 - **D** 11.4
- 8. A solution of a weak acid, HA, with a concentration of 0.250 mol dr What is the pKa value for this acid?
 - **A** 3.19
 - **B** 6.48×10^{-4}
 - C 1.05×10^{-7}
 - **D** 6.98
- 9. The diagram below shows an acid–base titration curve. Which comproduce this curve?


- A Ethanoic acid titrated against ammonia
- **B** Sulfuric acid titrated against ammonia
- C Ethanoic acid titrated against sodium hydroxide
- D Sulfuric acid titrated against sodium hydroxide

10. The table below shows the pH range at which various indicators clashould you use to give an accurate result in a titration of hydrochlo

Indicator	pH range ov
Indicator 1	
Indicator 2	
Indicator 3	
Indicator 4	

- A Indicator 1
- **B** Indicator 2
- C Indicator 3
- D Indicator 4
- 11. Use the following pH curve to calculate the K_a of the acid involved



Volume of alkali added /cm³

- **A** 4.6
- **B** 5.0
- C 4.0×10^4
- **D** 2.5×10^{-5}
- 12. Which of the following mixtures could form a buffer solution?
 - 1: Methanoic acid and sodium methanoate
 - 2: Sulfuric acid and sodium sulfate
 - 3: Ethanoic acid and sodium methanoate
 - A Only 1
 - B Only 1 and 2
 - C Only 2 and 3
 - **D** None of the mixtures
- 13. Benzoic acid has a K_a value of 6.46×10^{-5} . What would be the pH of mixing equal volumes of a 0.10 mol dm⁻³ solution of benzoic acid a sodium benzoate?
 - **A** 3.89
 - **B** 4.49
 - C 4.19
 - **D** 5.19

- 1. Which of the following is the correct definition for the term *lattice en*
 - A The energy change accompanying the formation of an ionic comfrom one mole of ions
 - **B** The energy change accompanying the formation of one mole of a gas phase from its ions
 - C The energy change accompanying the formation of one mole of a free ions in the gas phase
 - **D** The energy change accompanying the formation of an ionic comfree ions in the gas phase
- 2. What name is given to the letter A?

- A Standard enthalpy of atomisation of caesium
- **B** Standard enthalpy of evaporation of caesium
- C Standard enthalpy of formation of caesium
- **D** Bond enthalpy of caesium

3. Use the Born–Haber cycle in the previous question and the data bell enthalpy of formation for CsF.

Enthalpy change	Energy (kJ mo
ΔHr⁰(CsF)	-554
A	+77
$\Delta H_{\mathrm{DIS}^{m{\Theta}}}\!(\mathrm{F}_{2})$	+79
$\Delta H_{\rm IE1}^{\rm e}({\rm Cs})$	+376
$\Delta H_{\rm EA1}$ e (F)	-328

- **A** +350
- **B** -718.5
- **C** -758
- **D** +389.5
- 4. Use the data below to calculate the enthalpy of solution for calcium

 $\Delta H^{\theta}_{LAT(formation)}$ (CaBr₂) = -2176 kJ mol⁻¹; ΔH^{θ}_{HYD} (Ca²⁺) = -1650 kJ mc

- **A** +1014 kJ mol⁻¹
- **B** -4500 kJ mol⁻¹
- C +189 kJ mol⁻¹
- D -148 kJ mol⁻¹
- 5. The table of data below shows the calculated lattice energy (assumir lattice energy derived from experimental data using a Born–Haber c which of the ionic compounds, A to D, has the greatest covalent characteristics.

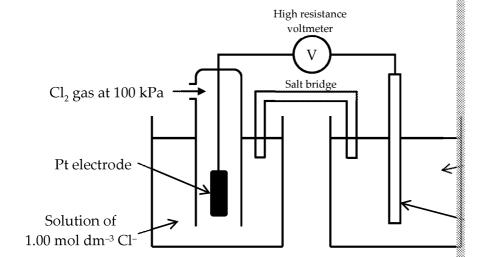
Compound	Calculated lattice energy /kJ mol ⁻¹	Born–Haber lattice energy /kJ mol ⁻¹
A	828	879
В	774	789
С	713	728
D	683	691

- 6. Which of the following equations correctly represents the first ionis
 - **A** $Na(s) + e^- \rightarrow Na^-(g)$
 - **B** Na(s) \rightarrow Na⁺(s) + e⁻
 - C Na(s) + $e^- \rightarrow Na^-(s)$
 - **D** Na(g) \rightarrow Na⁺(g) + e⁻

- \mathbf{A} CO₂(s), CO₂(aq), CO₂(g)
- **B** CO₂(g), CO₂(s), CO₂(aq)
- **C** CO₂(aq), CO₂(g), CO₂(s)
- \mathbf{D} CO₂(aq), CO₂(s), CO₂(g)
- 8. Calculate the change in entropy of the following reaction, using the

$$H_2(g) + \operatorname{Cl}_2(g) \to 2H\operatorname{Cl}(g)$$

	Molar entropy, S _m /J K ⁻¹ mol ⁻¹
H ₂ (g)	130.6
Cl ₂ (g)	223.0
HCl(g)	186.8


- A -166.8 J K⁻¹
- **B** +20.0 J K⁻¹
- C -20.0 J K^{-1}
- D +166.8 J K⁻¹
- 9. Based on the Gibbs equation, $\Delta G = \Delta H T\Delta S$, which of the following
 - **A** For an endothermic reaction with ΔS = +ve, the reaction is more l spontaneously at high temperature than at low temperature.
 - **B** For an endothermic reaction with ΔS = -ve, the reaction is more list spontaneously at high temperature than at low temperature.
 - **C** For an exothermic reaction with ΔS = -ve, the reaction is more like spontaneously at high temperature than at low temperature.
 - **D** For an exothermic reaction with ΔS = +ve, the reaction will not be temperature.
- 10. At room temperature (298 K), a chemical reaction with $\Delta H = +108.0 \text{ k}$ $\Delta S = +96.00 \text{ J K}^{-1} \text{ mol}^{-1}$ does not occur spontaneously. Use the equation minimum temperature at which the reaction becomes feasible.
 - **A** 1.125 K
 - **B** $1.125 \times 10^3 \text{ K}$
 - **C** $8.889 \times 10^{-4} \text{ K}$
 - **D** 0.8889 K

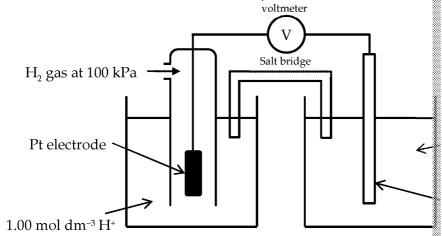
Topic 4: Redox II

- 1. Which of the following half-equations correctly follow(s) the IUPAC creations at electrodes?
 - 1: $Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq)$
 - 2: $Fe^{2+}(aq) \rightleftharpoons Fe^{3+}(aq) + e^{-}$
 - 3: $Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$
 - A Only half-equation 2
 - **B** Half-equations 1 and 2
 - C Half-equations 1 and 3
 - **D** Half-equations 1, 2 and 3
- 2. Which is the correct conventional representation of the electrochemica diagram below?

- **A** $Fe(s) | Fe^{2+}(aq) | | Cl^{-}(aq) | Cl_{2}(g) | Pt(s)$
- **B** Fe(s) $|Fe^{2+}(aq)| |Cl_2(g)| |Cl_2(aq)| |Pt(s)|$
- C Fe(s) $|Fe^{2+}(aq)|Cl^{-}(aq)|Cl_2(g)|Pt(s)$
- **D** Fe(s) $|Fe^{2+}(aq), Fe^{3+}(aq)| |Cl_2(g)| |Cl_2(aq)| |Pt(s)|$
- 3. Which of the following can affect the value of the electrode potential

$$Zn(s) | Zn^{2+}(aq) | |$$

- 1: The temperature of the room
- 2: The pressure of the room
- 3: The concentration of the solution of Zn^{2+} ion
- A Only 1
- B Only 1 and 3
- C Only 2 and 3
- **D** 1, 2 and 3


Standard electro

	Ha	ılt-cell	
2H+(aq)	+	2e-	$\rightleftharpoons H_2(g)$
Ag+(aq)	+	e-	$\rightleftharpoons Ag(s)$
$Zn^{2+}(aq)$	+	2e-	\rightleftharpoons Zn(s)

- A Silver ions and zinc metal
- **B** Hydrogen gas and silver ions
- C Silver metal and zinc ions
- D Zinc metal and hydrogen ions
- 5. Use the data given below to calculate the cell potential of an electrocl standard hydrogen electrode as the anode and a piece of copper dipp solution of copper(II) chloride as the cathode.

	Ha	lf-cell		Standard electro
2H+(aq)	+	2e-	\rightleftharpoons H ₂ (g)	
$Cu^{2+}(aq)$	+	2e-	$\rightleftharpoons Cu(s)$	
$Cu^{2+}(aq)$	+	e-	\rightleftharpoons Cu ⁺ (aq)	

- **A** 0.15 V
- **B** 0.34 V
- **C** -0.15 V
- **D** -0.34 V
- 6. A student measures the electrode potential for the copper(II)/copper(II)/copper(III)/co

Her lab partner says that what has been measured is not a *standard* elethe conditions is non-standard?

- **A** The hydrogen gas is at the wrong pressure.
- **B** The temperature is wrong.
- C The concentrations of the copper ions are wrong.
- **D** The concentration of the hydrogen ions is wrong.

$$Mg(s)|Mg^{2+}(aq)||Ag^{+}(aq)|Ag(s)|E^{\theta} = +3.1$$

 $Cu(s)|Cu^{2+}(aq)||Fe^{2+}(aq)|Fe(s)|E^{\theta} = -0.75$

Use this information to decide which of the following shows the corrif these cells were set up.

- **A** $Mg(s) + 2Ag^{+}(aq) \rightarrow Mg^{2+}(aq) + 2Ag(s)$ and $Fe^{2+}(aq) + Cu(s) \rightarrow Fe(s)$
- **B** $Mg^{2+}(aq) + 2Ag(s) \rightarrow Mg(s) + 2Ag^{+}(aq)$ and $Fe^{2+}(aq) + Cu(s) \rightarrow Fe(s)$
- C $Mg^{2+}(aq) + 2Ag(s) \rightarrow Mg(s) + 2Ag^{+}(aq)$ and $Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}$
- **D** $Mg(s) + 2Ag^{+}(aq) \rightarrow Mg^{2+}(aq) + 2Ag(s)$ and $Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}$
- 8. One type of fuel cell uses the reaction of methanol with oxygen to prodequation for the reaction in the fuel cell and the half-equation for the new

Overall: $CH_3OH + 1\frac{1}{2}O_2 \rightarrow CO_2 + 2H_2O$ Negative electrode: $CH_3OH + H_2O \rightarrow CO_2 + 6H^+ + 6e^-$

Which of these is the correct half-equation for the reaction at the posisuch a way that it will combine with the negative electrode half-equation as it is shown above?

- A $1\frac{1}{2}O_2 + 6H^+ + 6e^- \rightarrow 3H_2O$
- **B** $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$
- C $1\frac{1}{2}O_2 + 6H^+ + 6e^- \rightarrow 2H_2O$
- **D** $O_2 + 4H^+ + 6e^- \rightarrow 2H_2O$
- 9. What type of cell has the electrode reactions shown below?

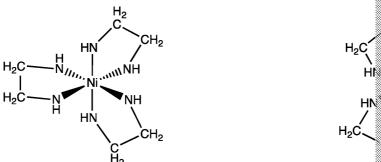
Positive electrode: $Li^+ + CoO_2 + e^- \rightarrow Li^+[CoO_2]^-$

Negative electrode: $Li \rightarrow Li^+ + e^-$

- **A** Fuel cell
- B Non-rechargeable cell
- C Rechargeable cell
- D Irreversible cell
- 10. Which of the following shows the correct equations for the electrode reactions of the cell, along with the correct explanation of how an electric cu
 - A The reaction at the negative electrode is $2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$ electrons which travel **internally** through a salt bridge to the positive reaction uses these electrons: $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$.
 - **B** The reaction at the negative electrode is $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$. which travel around an **external** circuit to the positive electrode, these electrons: $4H_2O + 4e^- \rightarrow 2H_2 + 4OH^-$.
 - C The reaction at the negative electrode is $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$. which travel **internally** through a salt bridge to the positive electroses these electrons: $4H_2O + 4e^- \rightarrow 2H_2 + 4OH^-$.
 - **D** The reaction at the negative electrode is $2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$ electrons which travel around an **external** circuit to the positive expression uses these electrons: $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$.

Topic 5: Transition Metals

- 1. Which of these shows the correct electronic configuration for a transition periodic table?
 - **A** $[Ar]3d^54s^1$
 - **B** $[Ar]3d^{10}4s^2$
 - C [Kr]3d⁵4s¹
 - **D** [Kr]3d¹⁰4s²
- 2. Which of these explanations of the toxicity of carbon monoxide is corre
 - A Carbon monoxide is toxic because it forms a strong ionic bond to groups, taking the place of oxygen and reducing the oxygen-carry
 - **B** Carbon monoxide is toxic because it forms a coordinate bond to taking the place of oxygen and reducing the oxygen-carrying cap
 - C Carbon monoxide is toxic because it forms a coordinate bond to t groups, taking the place of oxygen and reducing the oxygen-carr
 - D Carbon monoxide is toxic because it forms a covalent bond to oxyg binding to the Fe(II) in haem groups and so reduces the oxygen-ca
- 3. The following equilibrium lies very far to the right-hand side (the value What is the correct explanation for this?


 $[Ni(H_2O)_6]^{2+} + 3H_2NCH_2CH_2NH_2 \rightleftharpoons [Ni(H_2NCH_2CH_2N)_2]^{2+}$

- **A** The reaction is very exothermic because so many bonds are being number that are broken.
- **B** The increase in the number of molecules during the reaction causentropy.
- C The production of water, which is a very stable molecule, results enthalpy.
- D [Ni(H₂O)₆]²⁺ is an unstable ion and spontaneously reacts with many
- 4. Which of the following is/are correct in describing Pt(NH₃)₂Cl₂? Give
 - 1: It is a tetrahedral complex ion.
 - 2: It has a coordination number of 4.
 - 3: It has cis and trans isomers.
 - A 1 only
 - **B** 2 only
 - C 2 and 3
 - **D** 1, 2 and 3

5. Which type of isomerism is shown by these two structures?

- A Cis-trans isomerism
- **B** Geometrical isomerism
- C E/Z isomerism
- **D** Optical isomerism
- 6. Which is the correct description for the reaction shown below?

$$[Cu(H_2O)_6]^{2+}(aq) + 4Cl^{-}(aq) \rightleftharpoons [CuCl_4]^{2-}(aq) + 6$$

- A Complete ligand substitution with a change of coordination num
- **B** Incomplete ligand substitution with a change of coordination number 1.
- C Complete ligand substitution with a change from monodentate to
- D Incomplete ligand substitution with a change of ligand size
- 7. Which of these is/are a correct set of characteristics typical of *transition*
 - 1: Formation of coloured ions
 - 2: Catalytic activity
 - 3: Variable oxidation state
 - A 1 only
 - **B** 1 and 2 only
 - C 2 and 3 only
 - **D** 1, 2 and 3
- 8. When FeCl₂ solution is added to a solution of KI and Na₂S₂O₈, the rate but the amount of FeCl₂ does not change. Which statement best expla
 - A The FeCl₂ acts as a homogeneous catalyst. Its ability to change free do this.
 - B The FeCl₂ acts as a heterogeneous catalyst. Its ability to change from to do this.
 - C The FeCl₂ acts as a homogeneous catalyst. Its ability to provide a reactants to adsorb onto allows it to do this.
 - D The FeCl₂ acts as a heterogeneous catalyst. Its ability to provide a reactants to adsorb onto allows it to do this.
- 9. Which of the following can affect the difference in energy, ΔE , betwee excited state of d-electrons in a transition metal complex ion?
 - 1: A change in the oxidation state of the transition metal
 - 2: A change in the coordination number of the transition metal
 - 3: A ligand substitution reaction
 - **A** 1 only
 - **B** 1 and 2 only
 - C 2 and 3 only
 - **D** 1, 2 and 3

10. Which of the following procedures could you use to observe the covanadium ions with vanadium in oxidation states V, IV, III and II?

- A Add zinc to an acidified solution containing the [VO(H₂O)₅]²⁺ i
- **B** Add zinc to an acidified solution containing the VO₃ ion
- C Add potassium permanganate to an acidified solution containi
- D Add potassium permanganate to an acidified solution containing
- 11. Which pair of equations correctly show V₂O₅ acting as a catalyst in
 - A $SO_2 + V_2O_5 \rightarrow SO_3 + V_2O_4$ $V_2O_4 + \frac{1}{2}O_2 \rightarrow V_2O_5$
 - **B** $SO_2 + V_2O_5 \rightarrow SO_3 + V_2O_4$ $V_2O_4 \rightarrow V_2O_3 + \frac{1}{2}O_2$
 - C $1\frac{1}{2}H_2 + V_2O_5 \rightarrow V_2O_2(OH)_3$ $V_2O_2(OH)_3 + \frac{1}{2}N_2 \rightarrow V_2O_5 + NH_3$
 - $\begin{array}{ll} \textbf{D} & 2\frac{1}{2}H_2 + V_2O_5 \rightarrow V_2(OH)_5 \\ & & V_2(OH)_5 + \frac{1}{2}N_2 \rightarrow V_2O_3(OH)_2 + NH_3 \end{array}$
- 12. Which of the following reactions show(s) how the oxidation of C₂C
 - 1. $2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$
 - 2. $4Mn^{2+} + MnO_{4^{-}} + 8H^{+} \rightarrow 5Mn^{3+} + 4H_{2}O$
 - 3. $2Mn^{3+} + C_2O_4^{2-} \rightarrow 2CO_2 + 2Mn^{2+}$
 - A 1 only
 - **B** 1 and 2 only
 - C 2 and 3 only
 - **D** 1, 2 and 3
- 13. Which of the following statements describes what you would obselve hydroxide solution was added *dropwise* to separate solutions of aluiron(III) chloride?
 - A A precipitate of Fe(OH)₃ would form and then disappear as many precipitate of Al(OH)₃ would form and this too would disappear was added.
 - B A precipitate of Fe(OH)³ would form and would be unaffected NaOH; a precipitate of Al(OH)³ would form but would disapp was added.
 - C A precipitate of Fe(OH)₃ would form and would be unaffected NaOH; a precipitate of Al(OH)₃ would form and also be unaff was added.
 - D A precipitate of Fe(OH)₃ would form and then disappear as m precipitate of Al(OH)₃ would form but would be unaffected as

- A $[Cu(H_2O)_4]^{2+}(aq) + 4DMGH(aq) \rightarrow [Cu(DMGH)_4]^{2+} + 4H_2O$
- **B** $[Cu(H_2O)_4]^{2+}(aq) + 2DMGH(aq) \rightarrow [Cu(DMGH)_2]^{2+} + 4H_2O$
- C $[Cu(H_2O)_6]^{2+}(aq) + 3DMGH(aq) \rightarrow [Cu(DMGH)_3]^{2+} + 6H_2O$
- **D** $[Cu(H_2O)_6]^{2+}(aq) + 3DMGH(aq) \rightarrow [Cu(H_2O)_3(DMGH)_3]^{2+} + 3H_0$
- 15. Which of the following statements best explains why aqueous solution compounds are coloured?
 - A As white light passes through the solution, d electrons move a state of higher energy in the d-subshell. This causes certain be emitted.
 - **B** As white light passes through the solution, d electrons move a state at lower energy in the p-subshell. This causes certain be absorbed.
 - C As white light passes through the solution, d electrons move an excited state at higher energy. This causes certain wavelers
 - D As white light passes through the solution, d electrons move a state at lower energy in the p-subshell. This causes certain be emitted.
- 16. 20.0 cm³ of a solution of iron(II) chloride needed an average titre of solution of potassium dichromate to reach the end point. What we solution? Relevant half-equations are given below.

$$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$$

 $Cr_2O_7^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr_3^{3+}(aq) +$

- **A** $1.94 \times 10^{-3} \text{ mol dm}^{-3}$
- **B** $9.71 \times 10^{-2} \text{ mol dm}^{-3}$
- C $1.62 \times 10^{-2} \text{ mol dm}^{-3}$
- **D** 0.111 mol dm⁻³
- 17. Why do aqueous solutions of iron(III) salts have a pH below 2, whiron(II) salts have a pH of 4 or above?
 - A The Fe(III) ion polarises water ligands more than the Fe(II) ion more soluble than iron(II) salts
 - **B** The Fe(III) ion polarises water ligands more than the Fe(II) ion release H⁺ more readily when bonded to Fe(III) than when bo
 - C Fe(III) ions bond to OH- ions more strongly than Fe(II) ions, a these ions from an aqueous solution.
 - **D** Fe(II) ions bond weakly to OH⁻ ions, Fe(III) ions bond strongly compounds release more OH⁻ ions into solution.

Topic 6: Kinetics II

1. Use the initial rates data below to help you select the correct rate equ

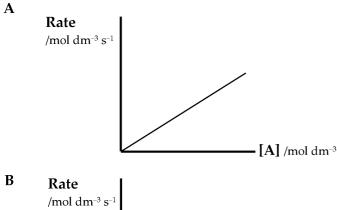
 $2I^{-}(aq) + H_2O_2(aq) + 2H^{+}(aq) \rightarrow I_2(aq) + 2H_2$

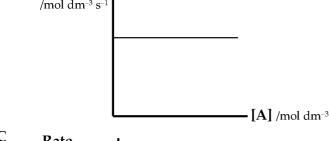
	[I-] / mol dm-3	[H ₂ O ₂] / mol dm ⁻³	[H+] / mol dm
1	0.030	0.036	0.003
2	0.015	0.036	0.003
3	0.030	0.009	0.003
4	0.030	0.009	0.006

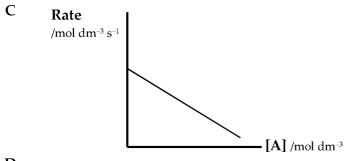
- **A** Rate = $k[I^-][H_2O_2][H^+]$
- **B** Rate = $k[I^{-}][H_2O_2]$
- C Rate = $k[I^-]^2[H_2O_2][H^+]^2$
- **D** Rate = $k[I-][H_2O_2]^2$
- 2. The rate of the reaction between NO and H₂ is given by the equation initial rates data below to choose the correct value for the rate constant.

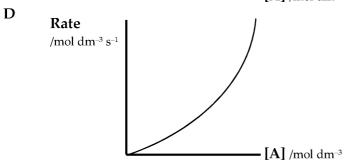
[NO] / mol dm ⁻³	[H ₂] / mol dm ⁻³	Rate
0.0460	0.0130	

- A $2.00 \times 10^3 \text{ dm}^6 \text{ mol}^{-2} \text{ min}^{-1}$
- **B** $9.33 \times 10^{-6} \text{ dm}^6 \text{ mol}^{-2} \text{ min}^{-1}$
- C $1.54 \times 10^5 \text{ dm}^6 \text{ mol}^{-2} \text{ min}^{-1}$
- $D = 7.18 \times 10^{-4} dm^6 mol^{-2} min^{-1}$

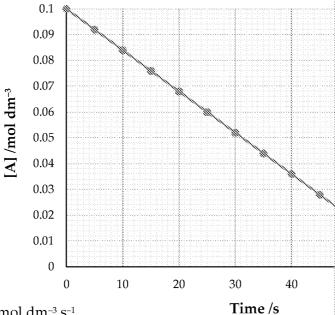



COPYRIGHT PROTECTED



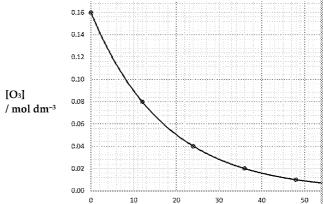

[Quest

3. If a reaction is zero order with respect to reactant A, which graph representation against concentration of A?


4. In the reaction of sodium thiosulfate (Na₂S₂O₃) with hydrochloric acie produced. The data below shows how long a series of reactions took that a mark under the reaction flask could no longer be seen. From the reaction with respect to HCl and to Na₂S₂O₃?

[HCl]	[Na ₂ S ₂ O ₃]	Time
(mol dm ⁻³)	(mol dm ⁻³)	(s)
0.100	0.150	237
0.200	0.150	59
0.100	0.300	118

- A Second order in HCl and first order in Na₂S₂O₃
- B Second order in HCl and second order in Na₂S₂O₃
- C First order in HCl and first order in Na₂S₂O₃
- D First order in HCl and second order in Na₂S₂O₃



5. The following is a concentration—time graph for a zero-order reactiful following is the correct value for the rate constant for this reaction,

- **A** $-1.8 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1}$
- **B** $1.6 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1}$
- $C -1.6 \times 10^{-3} \text{ s}^{-1}$
- $D 625 s^{-1}$
- 6. A concentration–time graph of the first-order decomposition reaction.

 Use the graph to determine the rate of decomposition of ozone 20 states the reaction.

- A 360 mol dm⁻³ s⁻¹
- **B** $5.5 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1}$
- $C = 0.050 \ mol \ dm^{-3} \ s^{-1}$
- $D = 2.8 \times 10^{-3} \, mol \, dm^{-3} \, s^{-1}$

7. Benzenediazonium chloride reacts with water according to the following

$$C_6H_5N_2Cl(aq) + H_2O(l) \rightarrow C_6H_5OH(aq) + HCl(aq) + N_2(g)$$

This is a list of practical techniques that may be useful in monitorir

- 1: Measuring the change of pH over time
- 2: Measuring the volume of gas produced over time
- 3: Measuring the change in temperature over time

Which of these statements correctly describe(s) which techniques conference of reaction of benzenediazonium chloride with water?

- **A** Only technique 1 the others will not work for this reaction.
- **B** Only technique 2 the others will not work for this reaction.
- C Techniques 1 and 2 can be used, but technique 3 will not work
- **D** Techniques 1, 2 and 3 will all work with this reaction.
- 8. The oxidation of iodide ions by hydrogen peroxide in the presence thiosulfate and a starch indicator is an example of a *clock* reaction. two correct reasons why this is a convenient, practical way of determined to the convenient of the conven
 - A There is an easily detectable change during the reaction; it is posthe initial rate of reaction before a significant amount of reactar
 - B There is an easily detectable change during the reaction; it is of reaction at a point when most of the reactants have been used.
 - C At least one of the reactants has a very intense colour and so concentrations; it is possible to accurately estimate the initial significant amount of reactants has been used up.
 - D At least one of the reactants has a very intense colour and so concentrations; it is possible to measure the rate of reaction at reactants have been used up.
- 9. Hydrogen reacts with iodine monochloride according to this overa

$$H_2(g) + 2ICl(g) \rightarrow 2HCl(g) + I_2(g)$$

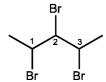
the reaction mechanism consists of two steps:

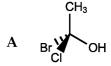
Slow step:
$$H_2(g) + ICl(g) \rightarrow HI(g) + HCl(g)$$

Fast step: $HI(g) + ICl(g) \rightarrow HCl(g) + I_2(g)$

Which of the following rate equations is consistent with this mecha

- A Rate = $k[H_2][IC1]^2$
- **B** Rate = k[HI][ICI]
- C Rate = $k[H_2][IC1]$
- **D** Rate = $k[H_2][HI][ICl]$


- 10. The Arrhenius equation can be expressed as $k = Ae^{-Ea/RT}$. What does between the temperature, T, of a reaction and the value of the rate co
 - **A** As T increases, k will increase linearly.
 - **B** As T increases, k will decrease linearly.
 - **C** As T increases, k will increase exponentially.
 - **D** As T increases, k will decrease exponentially.
- 11. The Arrhenius equation can be converted into the following: ln k = following correctly describes a graphical method of determining the
 - A Plot ln k against 1/T. The activation energy is found from the negative statement of the property of the section of the sect
 - **B** Plot In A against 1/T. The activation energy is found from the negal
 - C Plot ln k against 1/T. The activation energy is found from the p
 - D Plot ln A against 1/T. The activation energy is found from the p


Topic 7: Organic Chemistry II

1. Which of the carbons labelled is chiral in the following molecule?

- A None of them
- **B** 2 only
- C 1 and 3 only
- **D** 1, 2 and 3

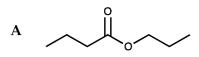
2. Which of the following molecules is an optical isomer of the molecular

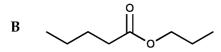
- 3. What is the correct definition of the term *racemic mixture*?
 - A Mixture that contains a single chiral compound but with two
 - **B** A mixture that contains unequal amounts of the two enantioms molecule
 - C A mixture that contains only one kind of enantiomer from two compounds
 - D A mixture that contains equal amounts of two enantiomers of a

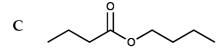
- 2: Reflux propanone with acidified potassium dichromate
- 3: Reflux propanal with acidified potassium dichromate
- A 1 and 2 only
- **B** 1 and 3 only
- C 2 only
- **D** 1, 2 and 3

5. Which of the following reagents could be used to tell propanone an

- A KCN
- B Na₂CO₃
- C NaBH₄
- **D** $[Ag(NH_3)_2]^+$

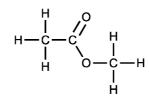

6. Which is the correct product of the reaction that occurs when KCN dilute acid?

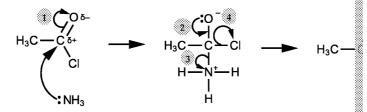

- A propanenitrile
- **B** ethanenitrile
- C 2-hydroxypropanenitrile
- D 2-hydroxyethanenitrile


7. In the reaction that occurs when KCN is added to butanone, follow isomeric products. Which of the following is the correct explanation

- **A** It is possible for the CN⁻ ion to add to butanone at two different different positional isomers.
- **B** The CN⁻ ion can add to either face of the flat C=O group, leadin isomers.
- C It is possible for the product to undergo a rearrangement, leading positional isomers.
- **D** The flat C=O bond cannot rotate, causing two different optical is

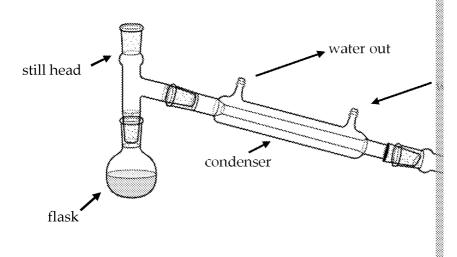
8. Which of the following esters is propyl butanoate?





9. What are the products of the reaction of this ester with an aqueous sol

- A Methanol and sodium ethanoate
- **B** Ethanol and sodium methanoate
- C Methanol and ethanoic acid
- D Ethanol and methanoic acid
- 10. Which of the following arrows in the mechanism is **incorrect**?

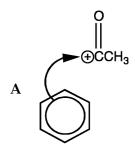


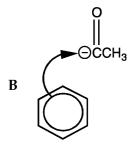
- **A** 1
- **B** 2
- **C** 3
- D 4
- 11. Which of the following is a product of the nucleophilic addition-elimethanoic anhydride and excess ammonia?
 - A H₂N-CH₂CH₃

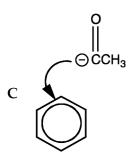
Compound	Result of adding sodium carbonate	Result of adding Tollens' reagent
1	no reaction	silver mirror forms
2	no reaction	no reaction
3	bubbles form	no reaction

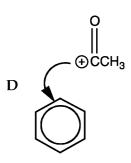
- A Compound 1 is an aldehyde; compound 2 is a ketone; compound
- **B** Compound 1 is a ketone; compound 2 is an aldehyde; compound
- C Compound 1 is an aldehyde; compound 2 is a carboxylic acid; comp
- **D** Compound 1 is a carboxylic acid; compound 2 is an aldehyde; compound 2 is a com
- 13. The diagram below shows how apparatus has been set up in order to What is wrong with the way in which the apparatus has been set up

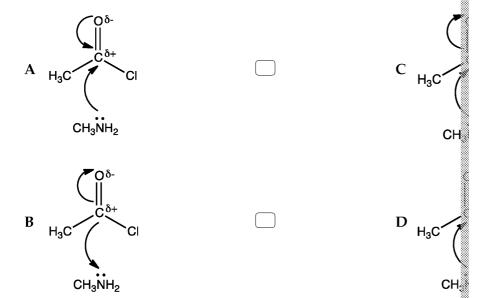
- **A** The water is flowing the wrong way in the condenser.
- **B** There is nothing in the still head to seal it.
- C The receiver adaptor does not make an airtight seal with the con
- **D** The condenser is at the wrong angle it should be vertical.

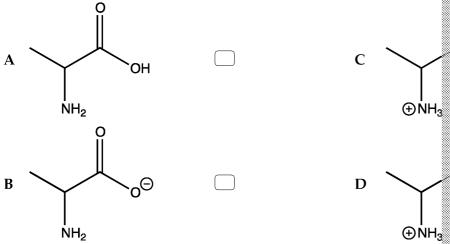



Topic 8: Organic Chemistry III


- 1. Which of the following pieces of evidence helped to convince the scie benzene molecules contain a delocalised π -system?
 - A Less heat energy is absorbed during the hydrogenation of benzen multiplying the enthalpy of hydrogenation of cyclohexene by three
 - **B** Less heat energy is released during the hydrogenation of benzene multiplying the enthalpy of hydrogenation of cyclohexene by three
 - C More heat energy is absorbed during the hydrogenation of benze multiplying the enthalpy of hydrogenation of cyclohexene by three
 - **D** More heat energy is released during the hydrogenation of benzen multiplying the enthalpy of hydrogenation of cyclohexene by three
- 2. Which of the following sets of reagents would convert methylbenzer


- A Chloroethane and AlCl₃
- **B** Chloroethane and sulfuric acid
- C Ethanoyl chloride and sulfuric acid
- D Ethanoyl chloride and AlCl₃
- 3. Why are substitution reactions of benzene much more common than
 - **A** Addition reactions result in products without the full delocalised makes them less stable.
 - **B** The benzene ring becomes overcrowded if too many atoms are ac products of addition reactions unstable.
 - C Substitution reactions are favoured because the shape of the benz electrophiles to attack.
 - D Electrophiles rarely undergo addition reactions they usually rea
- 4. Aromatic compounds can be nitrated using a 'nitrating mixture' of consulfuric acid. Which of the following equations correctly shows how the electrophile that attacks the benzene ring?
 - A $H_2SO_4 + HNO_3 \rightarrow NO_3^- + H_3SO_4^+$
 - **B** $2H_2SO_4 + HNO_3 \rightarrow NO_2 + H_3O^+ + 2SO_4^{2-}$
 - C $H_2SO_4 + HNO_3 \rightarrow H_2NO_{3^+} + HSO_{4^-}$
 - D $2H_2SO_4 + HNO_3 \rightarrow NO_2^+ + 2HSO_4^- + H_3O_4^+$




- 6. Which of the following shows the compounds in the correct order fr
 - A Phenylamine < methylamine < ammonia
 - **B** Ammonia < phenylamine < methylamine
 - C Ammonia < methylamine < phenylamine
 - **D** Phenylamine < ammonia < methylamine

7. Which of the following is a correct step in the mechanism of the reaethanoyl chloride?

8. Which of the following structures is the correct one for the amino action. (i.e. in acidic conditions)?

9. Which amino acids will be produced if this tripeptide is hydrolysed

$$\begin{array}{c|c}
O & CH_3 \\
H_2 & C & N & CH & N \\
NH_2 & CH & N & CH & N \\
NH_2 & CH & N & CH & N \\
O & CH & N & N \\
O$$

- A Only NH2CH2COOH
- **B** NH₂CH₂COOH and NH₂CH(CH₃)COOH
- C NH2CH2COOH, NH2CH(CH3)COOH and NH2CH2CONH2
- D Only NH₂CH(CH₃)COOH

10. Which of the following statements about different types of bond and

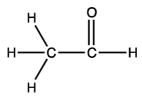
- A Hydrogen bonds help maintain a protein's secondary and tertian bonds help maintain the tertiary structure.
- **B** Hydrogen bonds help maintain a protein's secondary structure help maintain the tertiary structure.
- C Sulfur–sulfur bonds help maintain a protein's secondary structumaintain the tertiary structure.
- **D** Sulfur–sulfur bonds help maintain a protein's secondary structumaintain the secondary and tertiary structures.
- 11. Which of the following is the correct way to synthesise 1-aminoprop chloroethane?
 - A Reflux chloroethane with sodium cyanide in ethanol then react that and a nickel catalyst at high temperature and pressure.
 - **B** Heat chloroethane with a large excess of ammonia dissolved in e then separate the product by distillation.
 - C Reflux chloroethane with sodium cyanide in ethanol then reflux hydrochloric acid.
 - **D** Reflux chloroethane with a large excess of ammonia dissolved in product by distillation.
- 12. Which of the following schemes is a possible way of making 2-hydrox
 - 1. CH₃CH2CHO —NaCN(aq) CH₃CH2CH(OH)CN
 - A
 2. CH3CH2CH(OH)CN HCl(aq) CH3CH2CH(OH)COOH
 - 1. CH₃CH₂CHO NaBH₄ CH₃CH₂CH₂OH
 - B
 2. CH₃CH₂CH₂OH

 K₂Cr₂O₇/H⁺
 CH₃CH₂CH(OH)COOH
 - 1. CH₃CH₂CHO → CH₃CH₂CH(OH)CH₃
 - - 1. CH₃CH₂CHO

 K₂Cr₂Or/H⁺

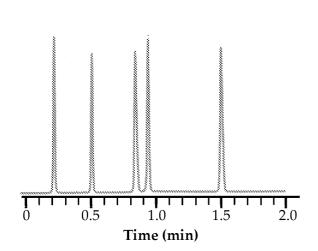
 CH₃CH₂CH₂COOH

D


2. CH₃CH₂CH2COOH NaOH(aq) CH₃CH2CH(OH)COOH

Topic 9: Modern Analytical Technique

1. What would be the splitting patterns of the two signals in the ¹H NMI shown below?

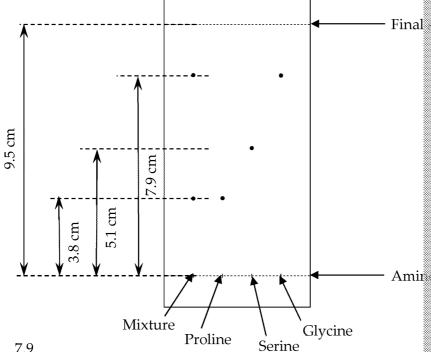

- A Quartet and doublet
- **B** Triplet and singlet
- C Triplet and doublet
- **D** Two singlets
- 2. How many signals would you expect to see in the proton NMR spectr
 - **A** 1
 - **B** 2
 - **C** 3
 - **D** 4
- 3. Which isomer with the formula C₃H₆O would give the carbon-13 NMI. The chemical shift values of the peaks are not needed to answer this q

δ / ppm

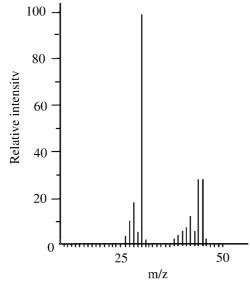
- A Propanone, CH₃COCH₃
- **B** Prop-2-ene-1-ol, CH₂CHCH₂OH
- C Prop-1-ene-2-ol, CH₂C(OH)CH₃
- D Propanal, CH₃CH₂CHO

Use the following gas chromatogram plus the table of data to identified the mixture.

Compoun
methanol
ethanol
propan-1-c
propan-2-c
methanal
ethanal
propanal
propanone
· · · · · · · · · · · · · · · · · · ·


- A Methanol, ethanol, propanal, propan-1-ol
- B Methanol, ethanol, propanone, propan-1-ol
- C Methanol, methanal, ethanal, ethanol, propanal, propan-1-ol
- D Methanol, ethanal, ethanol, propanal, propan-1-ol
- 5. A mixture of compound A and compound B is passed through a configuration Propanone is poured down the column and compound A emerges Which of the following statements can explain this?
 - **A** Compound A is a smaller molecule than compound B.
 - **B** Compound A has a greater affinity for silica than compound B.
 - C Compound A is more soluble in the propanone than compound
 - **D** Compound A is more volatile than compound B.

COPYRIGHT PROTECTED



[Que

The diagram below shows a TLC chromatogram run on a number of value for glycine?

- 7.9 A
- В 1.2
- \mathbf{C} 0.54
- D 0.83
- 7. What is the main criterion to consider when using mass spectrometry
 - Sample composition
 - В Relative mass of atoms
 - C Concentration of elements in the sample
 - D Sample properties
- The mass spectrum shown is of a hydrocarbon. What is the relative compound, and which one is the base peak?

A Molecular weight: 25, base peak: 30

B Molecular weight: 30, base peak: 45

C Molecular weight: 45, base peak: 30

D Molecular weight: 44, base peak: 30

Section A Quick Answers

Topic 1: Equilibrium II

- C 1.
- 5. В
- 2. Α
- 6. D
- 3. D
- 7. C
- C

Topic 2: Acid-Base Equilibria

- D 1.
- 8. D
- 2. В
- 9. В
- 3. Α
- 10. A
- 4. C
- 11. D
- 5. D 6. Α
- 12. A 13. B
- 7. D

Topic 3: Energetics II

- 1. C
- 6. D
- 2. Α В
- 7. Α
- 3.
- 8. В
- 4. D
- 9. Α 10. B
- 5. A

Topic 4: Redox II

- 1. C
- 6. В
- 2. В
- 7. D
- 3. В
- 8. 9. C
- 4. Α 5. В
- 10. D

Topic 5: Transition Metals

- 1. Α
- 10. B
- 2. В
- 11. A 12. D
- В 3.
- C 4. 5. D
- 13. B 14. C
- 6. Α
- 15. C
- 7. D
- 16. B 17. B
- 8. Α
- 9. D

Topic 6: Kinetics II

- В 1.
- 2. C
- 3. В
- 4.
- 5. В
- 6. D

Topic 7: Organic C

- C
- В 2.
- 3. D
- 4. В
- 5. D
- C 6.
- 7. В

Topic 8: Organic C

- 1. В
- D 2.
- 3. A
- 4. D
- 5. Α
- D 6.

Topic 9: Modern A

- Α
- 2. В
- 3. Α
- D

Section A Full Answers

Topic 1: Equilibrium II

Quest	tion 1		
A	*	Not all statements are true	Statement 2 is v
В	×	Statement 2 is not correct	1
С	✓		
D	*	Statement 3 is correct, but so is statement 1	
Oues	tion 2	,	
$\frac{\sim}{\mathrm{A}}$	✓	Correct (endothermic reaction)	
В	*	This would move the position of equilibrium left	The reverse rea
С	×	This would have no effect on the position of equilibrium	There is the sa either side of t
D	×	This would have no effect on the position of equilibrium	There is the sa
Ques	tion 3		
A	*	Wrong partial pressure for PCl ₅	The sum of the total pressure
В	*	All partial pressures are wrong	Equilibrium de products are in
С	×	All partial pressures are wrong	These are the range multiplied by partial pressur
D	√	All partial pressures are correct	Mole fraction I Partial pressur 25.50 kPa Mole fraction of Partial pressur 0.3750 × 102.0
Ques	tion 4		
A	*	There are two types of error	The fraction is products/react omitted
В	×	Powers are missing	The fraction co products/react been raised to
С	✓	Correct fraction using the stoichiometric coefficients (numbers from balanced equation) as powers	
D	*	Correct powers have been used, but the fraction is wrong	The fraction is products/react

Ques	tion 5		
A	×	Wrong value	The square roo
В	✓	Since $K_p = \frac{(p_{NO_2})^2}{p_{N_2O_4}}$ then $p_{NO_2} = \sqrt{K_p x p_{N_2O_4}} = 198 \text{I}$	kPa
С	×	Wrong value	The expression down'
D	×	Wrong value	The expression down', and squ
Ques	tion 6		
A	×	One part of the description is wrong	A catalyst will reverse reaction achieved faster
В	×	One part of the description is wrong	A catalyst does of equilibrium
С	×	All of the description is wrong	A catalyst will reverse reaction achieved faster position of equ
D	✓	Correct	
Ques	tion 7		
A	×	Not all statements are correct	It is a common K_p is affected by position of this right as pressure of K_p would no
В	×	Not all statements are correct	Catalysts do no since they affect reverse reaction
С	✓	Only temperature affects the value of equilibrium constants	
D	×	The effect of temperature is incorrect	This is an exotleve) so high ter

Topic 2: Acid-Base Equilibria

		*	
Quest	ion 1		
A	×	Statement 1 is wrong	Brønsted-Lowr
В	×	Statement 1 is wrong. Statement 2 is wrong.	Ammonia is a B
С	×	Statement 2 is wrong. Statement 3 is wrong.	Brønsted–Lowr acceptors, not s
D	✓	No statements are correct (see above)	
Quest	ion 2		_
A	*	This is an acid–base equilibrium	A proton (H+ io H3PO4 to H2O
В	✓	This is not an acid-base equilibrium because no p	orotons (H+ ions) a
С	×	This is an acid-base equilibrium	A proton (H ⁺ io H ₂ SO ₄ to OH ⁻
D	*	This is an acid-base equilibrium	A proton (H ⁺ io HCl to O ²⁻
Quest	ion 3		
A	✓	Since $K_a = [H^+][C_6H_5O^-]/[C_6H_5OH]$ and $[H^+] = [C_6]$	H5O-]
В	×	Equation contains wrong powers	[H+] should be s
С	×	Equation contains wrong powers and is upside down	A combination
D	×	Equation is upside down	The products (F fraction (the nu
Quest	ion 4		
Α	×	1 is incorrect	Kw varies with t
В	×	2 is not the only correct statement; 1 is incorrect	Kw varies with t
С	✓	2 and 3 are both correct	
D	×	1 is incorrect	Kw varies with t
Quest	ion 5		
A	×	Wrong value	Since the acid is
В	✓	pH = -log(0.2) = 0.7 (to one significant figure)	_
С	×	Wrong value and sign	
D	×	Wrong sign	Remember ther equation for cal
Quest	ion 6		
A	✓	[acid] = [H+] = 10^{-pH} = $10^{-1.3}$ = 0.050 mol dm ⁻³ (to tw	o significant figu
В	×	Wrong sign in calculation	$10^{+1.3} = 20$ (to tw
С	×	Wrong formula used	log (1.3) = 0.11 (
D	×	Wrong formula used	10 × 1.3 = 13

Correct value – $pK_a = pH$ at half neutralisation and $K_a = 10^{-pKa}$

D

Question 12				
A	✓	This mixture is a weak acid plus a salt of that acid, and, as such, as the weak acid is in excess		
В	×	2 is not a buffer solution	Sulfuric acid i	
С	×	Neither 2 nor 3 is a buffer	3 will not forn different acid	
D	×	There is one mixture that will form a buffer		
Question 13				
A	×	Wrong value	Wrong formu [acid]/[salt])	
В	✓	$[H^+] = K_a \times [acid]/[salt] = 6.46 \times 10^{-5} \times 0.50 = 3.23 \times 10^{-5}. \ pH = -log(decimal places.$		
С	×	Wrong value	Concentration used in the cal	
D	×	Wrong value	Wrong formu	

Topic 3: Energetics II

Ques	tion 1		
Α	х	Wrong use of gas phase and of molar quantity	
В	x	Wrong use of gas phase	The ions, not t gas phase. Th under standar
С	✓	Correct definition – energy is measured per mole of energy released in <i>forming</i> an ionic lattice	compound and
D	×	Wrong use of molar quantity	The term is del
Ques	tion 2		
Α	✓	Correct: one mole of gaseous atoms is formed	
В	ж	This is not evaporation	
С	×	Elements don't have an enthalpy of formation	
D	х	Bond enthalpies apply to covalent bonds	
Ques	tion 3		
A	×		Wrong sign or halve ΔH _{dis} •(F
В	✓	$\Delta H^{\bullet}_{LAT \text{ (formation)}}(CsF) = -\Delta H_{EAI}^{\bullet}(F) - \Delta H_{IEI}^{\bullet}(Cs) - \frac{1}{2}$ $\Delta H_{dis}^{\bullet}(F_2) - A + \Delta H_{I}^{\bullet}(CsF)$ $\Delta H^{\bullet}_{LAT \text{ (formation)}}(CsF) = 328 - 376 - \frac{1}{2} \times 79 - 77 - 554$	
С	х		Didn't halve Δ
D	х		Wrong sign or
Ques	tion 4		
A	x	Sign error	You need to debromide ions, for calcium ion
В	х	Sign error	Need to use the formation in the
С	ж	Wrong value	There are two
D	✓	Δ SolH(CaBr ₂) = -1650 + (2 × -337) + 2176 = -148 kJ mol-	-1
Ques	tion 5		
A	✓	This has the largest difference between experimenta greatest covalent character (i.e. least perfect ionic lat	***
В	х	Wrong compound	There is one w
С	×	Wrong compound	calculated and
D	×	Wrong compound	values of lattic

Ques	tion 6					
Α	×	Wrong equation	Na should lose			
В	×	Wrong states	Ionisation is d			
С	×	Wrong equation and states	A combination			
D	✓	A gas-phase Na atom loses one electron to form an	ion with a positi			
Ques	tion 7					
A	✓	The solid state represents a lower state of entropy the gas phase	nan the aqueous			
В	×	Wrong order	A gas will alwa			
С	×	Wrong order	Solids have the			
D	×	Wrong order	Solids are lower			
Ques	tion 8					
A	×	Wrong value	There are two n			
В	✓	$\Delta S = S_{products} - S_{reactants} = (2 \times 186.8) - (130.6 + 223.0) = 20.0$				
С	×	Wrong sign	$S_{ m products} - S_{ m reactants}$			
D	×	Wrong value	A combination			
Ques	tion 9					
A	✓	ΔH is positive, and as T increases ΔG will become n	nore negative if A			
В	×	Not true	If ΔH is positive positive at all te will not be feasi			
С	×	Not true	If ΔH is negativ become more n			
D	×		If ΔH is negative negative at all to will be feasible			
Ques	Question 10					
A	x	Units not converted properly	108 kJ mol ⁻¹ = 1(
В	✓	Reaction becomes feasible as $\Delta G = 0$; thus $0 = \Delta H - T$	$\Gamma \Delta S$ or $T = \Delta H / \Delta S$			
С	×	Equation wrongly rearranged	Should be $T = \Delta$			
D	×	Units not converted properly and equation wrongly rearranged	A combination			

Topic 4: Redox II

A x Half-equation 2 does not follow IUPAC convention Electrode half-eas reductions B x Half-equation 1 is correct but 2 does not follow IUPAC convention Electrode half-eas reductions C ✓ Half-equations 1 and 3 are correctly written as reductions D x Half-equations 1 and 3 are correct but 2 does not follow IUPAC convention Electrode half-eas reductions Question 2 Cl⁻ and Cl₂ are in representations they would be cl₂ is would be cl₂ is would be cl₂ is would be selected the right-hand side should represent reduction. Cl⁻ and Cl₂ are in representations they would be selected the right-hand side should represent reduction. C x One symbol is not correct Salt bridges are Also, Cl⁻ and Cl₂ and Cl₂ are in representations they would be selected the region of the re	Quest	ion 1_				
B	2,7657		Half-equation 2 does not follow	Flectrode half-equa		
follow IUPAC convention C	A	*	1 ^	1 * ×		
D x	В	*	1 *	Electrode half-equa as reductions		
Question 2 A × Correct symbols but not in the correct order Cl⁻ and Cl₂ are in representation in they would be sore Cl₂ is would be sore Cl₂ is would be sore Cl₂ is would be sore classed the right-hand side should represent reduction. C × One symbol is not correct Salt bridges are Also, Cl⁻ and Cl₂ are in the right-hand side should represent reduction. D × There is an unnecessary symbol There is no Fe³+ Question 3 A × Not the only correct answer Concentration at Pressure does not affect this particular electrode pote of potential as no go the potential as no go	С	✓	Half-equations 1 and 3 are correctly written as	s reductions		
A Correct symbols but not in the correct order Correct symbols but not in the correct order All symbols correct and in the correct order. The left-hand side the right-hand side should represent reduction. C One symbol is not correct Salt bridges are Also, Cl- and Cl There is an unnecessary symbol There is no Fe³+ Question 3 A Not the only correct answer Concentration at B Correct − pressure does not affect this particular electrode pote C One incorrect answer Pressure does not potential as no great a	D	*		Electrode half-equa as reductions		
A Correct symbols but not in the correct order The presentation of they would be selected by the right-hand side should represent reduction. C Mathematical Salt bridges are Also, Cl⁻ and Cl⁻ D There is an unnecessary symbol There is no Fe³+ Question 3 A Not the only correct answer Concentration a Pressure does not affect this particular electrode potential as no go the potential as no go the potential as no go the potential would be 0.80 V − -0.76 V = 1.56 V. As this is represents the most favourable potential. B The cell potential would be 0.80 V − 0.00 V = 0.80 V C The cell potential would be 0.80 V − 0.00 V = 1.56 V. The cell potential would be 0.76 V − 0.80 V = -1.56 V. The cell potential would be 0.76 V − 0.80 V = -1.56 V. The cell potential would be 0.76 V − 0.80 V = -1.56 V. The cell potential would be 0.76 V − 0.80 V = -1.56 V. The cell potential would be 0.776 V − 0.80 V = -1.56 V. The cell potential would be 0.776 V − 0.80 V = -1.56 V.	Quest	ion 2				
the right-hand side should represent reduction. C	A	×	Correct symbols but not in the correct order	Cl- and Cl ₂ are in the representation shows they would be seen Cl ₂ is would be red		
There is an unnecessary symbol There is no Fe³+ Question 3 A	В	✓	l ,			
Question 3 A × Not the only correct answer Concentration at the concentratio	С	×	One symbol is not correct	Salt bridges are sho Also, Cl- and Cl2 ar		
A Not the only correct answer Concentration a B Correct – pressure does not affect this particular electrode pote C One incorrect answer Pressure does not affect this particular electrode pote Pressure does not affect this particular electrode potential as not affe	D	×	There is an unnecessary symbol	There is no Fe³+ sho		
B ✓ Correct – pressure does not affect this particular electrode poted C × One incorrect answer D × One incorrect answer Pressure does not affect this particular electrode potential as not potential. A ✓ The cell potential would be 0.80 V – -0.76 V = 1.56 V. As this is represents the most favourable potential. B × The cell potential would be 0.80 V – 0.00 V = 0.80 V C × The cell potential would be -0.76 V – 0.80 V = -1.56 V D × The cell potential would be 0.00 V – -0.76 V = 0.76 V	Quest	Question 3				
C x One incorrect answer Pressure does not potential as not go potential. D x One incorrect answer Pressure does not potential as not go potential as not go potential as not go potential. A ✓ The cell potential would be 0.80 V − -0.76 V = 1.56 V. As this is represents the most favourable potential. B x The cell potential would be 0.80 V − 0.00 V = 0.80 V C x The cell potential would be -0.76 V − 0.80 V = -1.56 V D x The cell potential would be 0.00 V − -0.76 V = 0.76 V	$\overline{\mathbf{A}}$	×	Not the only correct answer	Concentration also		
D x One incorrect answer potential as no great potential would be 0.80 V − -0.76 V = 1.56 V. As this is represents the most favourable potential. B x The cell potential would be 0.80 V − 0.00 V = 0.80 V C x The cell potential would be -0.76 V − 0.80 V = -1.56 V D x The cell potential would be 0.00 V − -0.76 V = 0.76 V	В	✓	Correct – pressure does not affect this particul	ar electrode potentia		
D x One incorrect answer potential as no pot	С	×	One incorrect answer	Pressure does not a potential as no gase		
A The cell potential would be 0.80 V – -0.76 V = 1.56 V. As this is represents the most favourable potential. B The cell potential would be 0.80 V – 0.00 V = 0.80 V C The cell potential would be -0.76 V – 0.80 V = -1.56 V D The cell potential would be 0.00 V – -0.76 V = 0.76 V	D	*	One incorrect answer	Pressure does not a potential as no gase		
represents the most favourable potential. B * The cell potential would be 0.80 V - 0.00 V = 0.80 V C * The cell potential would be -0.76 V - 0.80 V = -1.56 V D * The cell potential would be 0.00 V0.76 V = 0.76 V	Quest	ion 4				
C	A	✓	1 *	1.56 V. As this is the		
D	В	×	The cell potential would be $0.80 \text{ V} - 0.00 \text{ V} = 0$.80 V		
1	С	×	The cell potential would be $-0.76 \text{ V} - 0.80 \text{ V} = -1.56 \text{ V}$			
Question 5	D	×	The cell potential would be $0.00 \text{ V}0.76 \text{ V} = 0.76 \text{ V}$			
	Quest	ion 5				
A Wrong half-cell The cell involve	A	×	Wrong half-cell	The cell involves C		
B Since the standard hydrogen electrode has an electrode potential $V = 0.34 \text{ V}$	В	✓	Since the standard hydrogen electrode has an electrode potential σ V = 0.34 V			
C Wrong half-cell and wrong sign The cell involve	С	*	Wrong half-cell and wrong sign	The cell involves C		
D Wrong sign	D	×	Wrong sign			

COPYRIGHT PROTECTED

The equations and the explanation are all correct

D

Topic 5: Transition Metals

	4		
Questi			
A	✓	This is correct even though the 4s level is not fu	ll – it is the most s
			Transition metal This is the electr
В	×	Not a transition metal	which has a full
			oxidation states.
С	*	Wrong inner shell configuration	The core electron
		wrong filler shell configuration	transition metals
D	×	Wrong inner shell configuration and not a transition metal	A combination o
Questi	ion 2		
A	×	One error	CO forms coord
В	✓	Everything is correct	
С	×	One error	The iron in haen
			*
D	×	One error	CO does not form
Questi	ion 3		
A	×	Incorrect	There are exactly broken as forme
A B	* *	Incorrect Correct – it is the increase in entropy that drives	broken as forme
В	✓	Correct – it is the increase in entropy that drives	broken as formes the reaction forw Endothermic rea
			broken as formes the reaction forw
В	✓	Correct – it is the increase in entropy that drives	broken as formes the reaction forw Endothermic reactions form less stable p
В	× ×	Correct – it is the increase in entropy that drives Incorrect logic	broken as formes the reaction forw Endothermic reaform less stable pare more likely to
B C D	× ×	Correct – it is the increase in entropy that drives Incorrect logic	broken as formes the reaction forw Endothermic reaform less stable pare more likely to
B C D Questi		Correct – it is the increase in entropy that drives Incorrect logic Incorrect	broken as formes the reaction forw Endothermic reaction less stable pare more likely t [Ni(H2O)6]2+ is sta
B C D Questi	× x ion 4	Correct – it is the increase in entropy that drives Incorrect logic Incorrect Wrong shape	broken as formes the reaction forw Endothermic reaction less stable pare more likely t [Ni(H2O)6]2+ is state It is a square plate. There is cis-trans
B C D Questi	× x ion 4 x	Correct – it is the increase in entropy that drives Incorrect logic Incorrect Wrong shape Not the only correct answer	broken as formes the reaction forw Endothermic reaction less stable pare more likely t [Ni(H2O)6]2+ is state It is a square plate. There is cis-trans
B C D Questi A B C	x x ion 4 x x	Correct – it is the increase in entropy that drives Incorrect logic Incorrect Wrong shape Not the only correct answer It is a fourfold coordination complex with cis-tre	broken as formes the reaction forw Endothermic reaction less stable pare more likely t [Ni(H2O)6]2+ is state It is a square plant of the parents of the pa
B C D Questi A B C D	x x ion 4 x x	Correct – it is the increase in entropy that drives Incorrect logic Incorrect Wrong shape Not the only correct answer It is a fourfold coordination complex with cis-tre	broken as formes the reaction forw Endothermic reaction less stable pare more likely t [Ni(H2O)6]2+ is state It is a square plant of the parents of the pa
B C D Questi A B C D Questi	x x ion 4 x x ion 5	Correct – it is the increase in entropy that drives Incorrect logic Incorrect Wrong shape Not the only correct answer It is a fourfold coordination complex with cis-tre Wrong shape	broken as formes the reaction forw Endothermic reaction form less stable pare more likely t [Ni(H2O)6]2+ is state It is a square plate there is cis-transans isomerism It is a square plate
B C D Questi A B C D Questi A	x x ion 4 x x ion 5 x	Correct – it is the increase in entropy that drives Incorrect logic Incorrect Wrong shape Not the only correct answer It is a fourfold coordination complex with cis-tr Wrong shape Wrong isomerism type	broken as formes the reaction forw Endothermic reaction form less stable pare more likely t [Ni(H2O)6]2+ is state It is a square plate there is cis-transans isomerism It is a square plate the square plate th

Quest	tion 6		
A	✓	All six water ligands are replaced by four chlorid	e ion ligands
В	×	Incorrect description	It is a complete s are replaced
С	×	Incorrect description	Both water and
D	×	Incorrect description	Although the lig
Quest	tion 7		
A	×	Not the only correct answer	All three are typ
В	×	Not complete	All three are typ
С	×	Not complete	All three are typ
D	✓	Correct and complete	
Quest	tion 8		
A	✓	As it is in the same phase as the reactants, FeCl2 i oxidation state allows it to catalyse the redox rea	
В	×	Wrong type of catalyst	As it is in the sai
С	×	Wrong mechanism of catalysis	FeCl2 catalyses t oxidation state
D	×	Wrong type of catalyst	FeCl2 is a homog
Quest	tion 9		
A	×	Incomplete	This is not the o
В	×	Incomplete	These are not th
С	×	Incomplete	These are not the
D	✓	Correct	
Quest	ion 10		
A	*	Wrong ion	[VO(H2O)5]2+ has will reduce this state V will not l
В	✓	Correct	<u>'</u>
С	*	Wrong reaction	KMnO4 will oxic oxidation state I oxidation states
D	×	Wrong reaction	KMnO4 will not its highest oxida
Quest	ion 11		
A	✓	Correct	
В	×	Second equation is wrong	Since V ₂ O ₅ is no acting as a catal
С	×	Wrong process	V ₂ O ₅ is not a cat
D	×	Wrong process and not catalysis	The formation of and this does no

Quest	ion 16		
A	*	Value is not a concentration	The number of r correctly calcula concentration (n – 20 cm ³ or 0.020
В	✓	Calculation is correct: $(17.5/1000) \times 0.0185 = 3.2375 \times 10^{-4} \text{ moles of dichrorating ratio} = 1:6 so 3.2375 \times 10^{-4} \times 6 = 1.9425 \times 1 concentration = 1.9425 \times 10^{-3}/(20.0/1000) = 9.7125 = 1.9425 \times 10^{-3}$	0−3 moles of Fe pr
С	×	Wrong concentration	The reacting rati
D	×	Wrong concentration	The concentration been scaled up to different volume been accounted
Quest	ion 17		
A	*	Wrong conclusion from correct premise	Although Fe(III) Fe(II), this does for iron(III) com
В	✓	Correct	
С	×	Explanation is wrong	Iron complexes ions rather than
D	*	Explanation is wrong	Iron(II) and iron release OH- ions cause solutions

Topic 6: Kinetics II

Quest	ion 1		
A	×	Rate equation has been written to include concentration of each reactant as a term	It is possible for rate equation (i [H ⁺] is zero ord the table of dat
В	✓	Correct reactants and terms are raised to correct powers (orders are correct) – first order in both cases	You can tell the respect to I- by table of data – the rate change halves). In the and 3 shows the factor of 4, so confirst order.
С	×	Rate equation has been written to include the concentration of each reactant as a term, and the stoichiometric coefficients (balancing numbers) have been used as powers	This is an easy the correct way expression for to form a rate e
D	×	Correct reactants included in the rate equation, but the power is wrong (wrong order) for H_2O_2	The data has be reactants affect correctly used that the rate qu concentration (– but it is importhe [H ₂ O ₂] also
Quest	ion 2		
A	×	[H ₂] hasn't been squared	This is the resu
В	×	Equation rearranged wrongly (multiplication instead of division)	This is the resu
С	√	Rearranging equation: k = Rate/[NO][H ₂] ² Substituting values from table: $k = 1.20/(0.0460 \times (0.0130)^2) = 1.20/7.77 \times 10^{-6}$ $= 1.54 \times 10^5$	
D	×	Equation rearranged wrongly (multiplication instead of division) and [H2] not squared	This is a comb incorrect answ
Quest	ion 3		
A	×	Rate increases linearly with [A]	This linear relations concentration
В	✓	A horizontal line represents zero order in rate- concentration graphs	
С	×	Rate decreases with [A]	For zero order effect upon rat
D	×	Rate increases (non-linearly) with [A]	This shape of gorder reactions
Quest A	ion 3	instead of division) and $[H_2]$ not squared Rate increases linearly with $[A]$ A horizontal line represents zero order in rate—	This linear r

Quest	ion 4		
A	√	Since the time (very nearly) quarters (and so the rate increases fourfold) as the [HCl] doubles, this is a second-order relationship. Time halves (and rate doubles) as [Na ₂ S ₂ O ₃] doubles, indicating a first-order relationship.	
В	×	Wrong order for Na ₂ S ₂ O ₃	
С	×	Wrong order for HCl	
D	×	Wrong order for both	
Quest	ion 5		
A	×	Error in calculating gradient (Δy measured as $0-0.1$ instead of $0.012-0.1$). Also, wrong sign (k cannot be negative).	The line doe (i.e. [A] = 0). is negative (s k must be a p
В	√	0.012 Gradient of line = ((0.012 – 0.1) mol dm ⁻³)/((55 – 0) k = – gradient = 1.6 × 10 ⁻³ mol dm ⁻³ s ⁻¹	55 s) = -0.088/55
С	*	Wrong sign (k cannot be negative) and units	k must be a p
D	×	Error in calculating gradient. Also, wrong units.	Gradient calc instead of Δy the units of c
Quest	ion 6		
A	*	This is the reciprocal of the correct answer rounded to two significant figures	Gradient has Δx/Δy
В	×	This is $(0.16 - 0.050)$ mol dm ⁻³ /20 s = 5.5×10^{-3} mol dm ⁻³ s ⁻¹	Rather than to the curve, calculate the from the gragraph were a for curves.

Question 6 (continued) A misunders a given time \mathbf{C} This is 1/20 proportional come from re coincidence 0.16 0.12 0.36 0.08 D 0.04 0.02 Gradient of tangent to the curve at t = 20 s (see picture) = 0.105 mol (Actual value may vary slightly depending on how tangent is dr the same when rounded to two significant figures.) Question 7 BUT it is not Technique 1 will work since an acid (HCl) is × Α produced be used BUT it is not В × This will work since a gas (N2) is produced be used BUT it is not This will work since the reaction is exothermic \mathbf{C} × (temperature will rise as reaction proceeds) be used D All of the techniques could be used Question 8 The rate measured up to the point where the sodium thiosulfate \mathbf{A} produced causes a colour change) is an approximation of the ini close to the true initial rate so long as the reaction has not progre For an accura В × Second reason is incorrect important th very far whe None of the \mathbf{C} × First reason is incorrect (The product, starch that is See B and C Both reasons are incorrect Question 9 The orders (p × \mathbf{A} Wrong powers correspond to The orders (В × Wrong formulae molecularity \mathbf{C} ✓ Correct – the orders match the molecularity of the slow (rate-det Only reactan D Wrong formulae equations

Quest	ion 10		
A	*	Although k does increase, it is not a linear relationship	Failure to no
В	×	k will increase, not decrease, and it is not a linear relationship	Could be an sign in -Ea/R
С	√	As T increases the value of the fraction E_a/RT becomes smaller, so $-E_a/RT$ becomes less negative $-$ hence $e^{-E_a/RT}$ overall increases exponentially	
D	×	k will increase, not decrease	Could be an sign in -Ea/R
Quest	ion 11		
A	✓	Comparing $\ln k = -E_a/RT + \ln A$ to $y = mx + c$ shows $-E_a/R$. R is a constant.	that the grad
В	×	This is the wrong graph to plot	A mistake in plotted on th
С	×	This would give -Ea, not Ea	A sign error: cannot be ne
D	*	This is the wrong graph to plot	A mistake in plotted on th

Topic 7: Organic Chemistry II

		1 8			
Quest	tion 1				
A	×	Carbons 1 and 3 have four different groups attached, so are chiral			
В	×	Carbon 2 has two identical groups, so is not chiral			
С	✓	Carbons 1 and 3 have four different groups attack	ned, so are chiral		
D	×	Carbon 2 has two identical groups, so is not chira	1		
Quest	ion 2				
A	×	This has just been rotated			
В	✓	This is a rotated mirror image (you can tell becau two have been swapped)	se two groups are		
С	×	This has just been rotated			
D	×	This has just been rotated			
Quest	ion 3				
Α	×	The number of chiral centres is not relevant			
В	×	The amounts of each enantiomer must be equal			
С	×	A racemic mixture only needs one kind of chiral of	compound but equ		
D	✓	This is the correct definition			
Quest	ion 4				
A	×	One wrong reaction	Propanone canno		
В	✓	Both primary alcohols and aldehydes can be oxid	ised to carboxylic		
С	×	Wrong reaction	Propanone canno		
D	×	One wrong reaction	Propanone canno		
Quest	ion 5				
Α	×	Will not tell propanone and propanal apart	KCN will react w		
В	×	Will not tell propanone and propanal apart	Na ₂ CO ₃ will not		
C	*	Will not tell propanone and propanal apart	NaBH4 will react		
D	✓	This is Tollens' reagent, which will produce a silv	er mirror only wit		
Quest			4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
A	×	Wrong functional group	Addition of HCN		
В	×	Wrong functional group and too few carbons	Addition of HCN increases the nun one		
С	✓	Correct – a three-carbon hydroxynitrile forms	1		
D	×	Too few carbons	Addition of HCN in the product by		
Quest	ion 7				
A	×	Incorrect	There is only one that can be attack		
В	✓	Correct			
С	×	Incorrect	A rearrangement		
D	×	Incorrect conclusion	The C=O bond ca		
			no atoms connec		

Quest	ion 8		
Α	✓	Correct – the section from an alcohol has three car	bons, and the ca
В	×	This is propyl pentanoate	
С	×	This is butyl butanoate	
D	×	This is butyl propanoate	
Quest	ion 9		
A	√	Hydrolysis of an ester with an alkali forms a salt. so the salt will have two carbons (and the alcohol,	
В	×	Incorrect products	Wrong alcohol
С	×	Incorrect products	Hydrolysis with
D	×	Incorrect products	Hydrolysis with
Quest	ion 10		
A	×	This arrow is correct	When the nucle carbonyl carbon oxygen (the pi l
В	×	This arrow is correct	The double bor forms again
С	✓	Nitrogen does not leave again	_
D	×	This arrow is correct	The C–Cl bond oxygen (the pi I
Quest	10n II		
Quest A	10n 11 *	Wrong product	
		Wrong product Wrong product	This would be an excess of am
A	×		
A B	×	Wrong product	an excess of am This would be i
A B C D	×	Wrong product Wrong product	an excess of am This would be a acid anhydride Ammonia and
A B C D	x x	Wrong product Wrong product	an excess of am This would be a acid anhydride Ammonia and
A B C D	x x x ion 12	Wrong product Wrong product Correct	an excess of am This would be a acid anhydride Ammonia and a amide
A B C D Quest	x x x ion 12	Wrong product Wrong product Correct All three are correct	an excess of am This would be a acid anhydride Ammonia and a amide Silver mirror is
A B C D Quest A B	x x x v v v v v v v v v v v v v v v v v	Wrong product Wrong product Correct All three are correct 1 and 2 reversed	an excess of am This would be a acid anhydride Ammonia and a amide Silver mirror is
A B C D Quest A B C D	x x x ion 12 x	Wrong product Wrong product Correct All three are correct 1 and 2 reversed 2 and 3 reversed	an excess of am This would be a acid anhydride Ammonia and amide Silver mirror is Carboxylic acid
A B C D Quest A B C D	x x x x ion 12 x x	Wrong product Wrong product Correct All three are correct 1 and 2 reversed 2 and 3 reversed	an excess of am This would be a acid anhydride. Ammonia and amide. Silver mirror is Carboxylic acid. See above.
A B C D Quest A B C D Quest	x x x ion 12 x x ion 13	Wrong product Correct All three are correct 1 and 2 reversed 2 and 3 reversed All three are wrong	This would be a acid anhydride Ammonia and a amide Silver mirror is Carboxylic acid See above Water should fl
A B C D Quest A B C D Quest A	x x x ion 12 x x x x	Wrong product Correct All three are correct 1 and 2 reversed 2 and 3 reversed All three are wrong Not an error Correct – a thermometer in a thermometer pocket	This would be a acid anhydride Ammonia and a amide Silver mirror is Carboxylic acid See above Water should fl

Topic 8: Organic Chemistry III

		1 0	
Que	estio	n 1	
A	×	Error in statement	The enthalpy of
В	✓	This indicates that benzene is more stable than if it had	three localised C
С	×	Error in statement	The enthalpy of
D	×	Error in statement	Delocalisation r_{ϵ}
			during hydroge
	estio		
A	*	Wrong reagent	This would alky
B	*	Wrong reagent	This is a combin
С	×	Wrong reagent	Sulfuric acid car enable the react
D	✓	This is the Friedel–Crafts acylation reaction with AlCl ₃ a	as a halogen carri
Qu	estio	n 3	
Α	✓	Correct – without only partial delocalisation, products	of addition reacti
В	×	Wrong reason	Small atoms wo
С	×	Irrelevant	The shape of the whether additio
D	*	Untrue	Electrophiles un e.g. to alkenes
Qu	estio	n 4	
Α	×	Wrong products	The nitrating ele
В	×	Charges missing	The charges do n
С	*	Wrong products	H2NO3+ may be final product
D	✓	NO_{2} is the correct electrophile – and the equation is con-	rrectly balanced
Qu	estio:	n 5	
A	✓		
В	*	COCH ₃ should not be negative, as it is an electrophile	
С	*	COCH ₃ should not donate electrons into the ring, as the ring is electron dense	
D	*	As above, COCH3 should not donate electrons into the electron-dense ring	
Que	estio	n 6	
Α	×	Methylamine is more basic than ammonia	
В	×	Ammonia is more basic than phenylamine	
С	×	Ammonia and methylamine are more basic than phenylamine	
D	✓	Correct order	

 \mathbf{C}

D

×

×

Neither step works

Neither step works

Step 1 – NaBH4 cannot lengthen tl

Step 2 – a secondary alcohol cann

Step 1 – oxidation cannot lengther

Step 2 – OH cannot substitute the

have a positive dipole, i.e. OH- ca

with an alcohol group

Topic 9: Modern Analytical Techniqu

Quest	ion 1		
	<i>√</i>	Compat	
A		Correct	I = 1
В	*	Incorrect	The splitting pattern factual number of H at
С	×	Incorrect	The splitting pattern f the number of neighb
D	×	Incorrect	Both signals will be s
Quest	ion 2		
Α	×	Too few	There are two proton
В	✓	There is one signal for the proton on the OF CH ₃ groups	H group and one more f
С	×	Too many	The three CH3 groups environment
D	×	Too many	The three CH3 groups environment
Quest	ion 3		
A	✓	This is the only structure with just two different the spectrum	erent chemical environs
В	×	Too many chemical environments	This structure has three so the spectrum woul
С	×	Too many chemical environments	This structure has three so the spectrum woul
D	×	Too many chemical environments	This structure has three so the spectrum would
Quest	ion 4		
Α	×	Too few compounds	There are five peaks
В	×	One wrong compound	There is no peak at 1.
С	×	Too many compounds	There is no peak at 0.
D	√	Same number of compounds as peaks; all I	retention times are corr
Quest	ion <u>5</u> _		
A	×	Wrong reason	In this type of chrome molecules that affects through the column
В	×	Reverse reasoning	High affinity for the s
С	✓	Correct	
D	×	Wrong reason	In chromatography, speed at which the su

A	*	Wrong value	This is simply the l	
В	*	Wrong value	The formula for cal (i.e. 9.5/7.9 instead	
С	×	Wrong amino acid	The calculation is cacid (serine)	
D	√	Correct		
Questi	on 7			
A	*	Incorrect	Composition is de analysis method	
В	√	Correct		
С	×	Incorrect	A mass spectromete	
D	×	Incorrect	sample under inves according to their s and then the relativ	
Questi	on 8			
A	*	Incorrect	There is no peak at	
В	×	Incorrect	Molecular weight i peak is at 30	
С	√	Molecular ion (M ⁺) represents the intact molecule which has the molecule (M); the highest peak is the molecular ion, and the bathe spectrum) represents the most stable fragment		
D	×	Incorrect	44 is not the molec	

Question 6

Section B Questions

Topic 1: Equilibrium II

1. This question is about the equilibrium between dinitrogen tetroxide $N_2O_4(g) \rightleftharpoons 2NO_2(g)$.

The expression for K_P for this equilibrium is: $K_p = \frac{(P_{NO_2})^2}{P_{N_2O_4}}$

Which of the following statements relating to this gas-phase chemical explains how the equilibrium constant, K_P , controls the position of expressure is increased?

- A As the total pressure increases, the value of K_P initially rises. The increasing the partial pressure of N_2O_4 and decreasing the partial the value of K_P returns to its original value.
- **B** As the total pressure increases, the value of K_P initially falls. The increasing the partial pressure of NO₂ and decreasing the partial the value of K_P returns to its original value.
- C As the total pressure increases, the equilibrium shifts left, increased of N₂O₄ and decreasing the partial pressure of NO₂. The value (
- D As the total pressure increases, the equilibrium shifts right, increpressure of NO₂ and decreasing the partial pressure of N₂O₄. The therefore increases.
- 2. Nitrogen and oxygen form an equilibrium mixture with nitrogen mo

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

Under certain conditions, the value of the equilibrium constant, K_P , is If an equilibrium is established under these conditions, in which it is partial pressure of both N_2 and O_2 is 28 kPa, what is the equilibrium

- **A** 882 kPa
- **B** 697 kPa
- C 26.4 kPa
- **D** 29.7 kPa
- 3. The following equilibrium is set up in the gas phase:

$$C_6H_6(g) + 3H_2(g) \rightleftharpoons C_6H_{12}(g) \Delta H = -208 \text{ kJ } \text{ m}$$

Which of the following would increase the amount of cyclohexane, CoH

- 1: A decrease in pressure at constant temperature
- 2: A decrease in temperature at constant pressure
- 3: Addition of a nickel catalyst to the mixture
- A Only 1
- B Only 2
- C Only 3
- **D** 1, 2 and 3

Which is the correct expression for K_P for the following reaction?

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

- $\mathbf{A} \quad K_p = \frac{(p_{SO_3})^2}{(p_{SO_2})^2 p_{O_2}}$
- $\mathbf{C} \qquad K_p = \frac{p_{2SO_2}p}{p_{2SO}}$ $\mathbf{D} \qquad K_p = \frac{(p_{SO_2})}{(p_{SO})}$

- $\mathbf{B} \quad K_p = \frac{p_{SO_3}}{p_{SO_2}p_{O_2}}$

- In the following gas phase equilibrium, $K_p = 3.94 \text{ kPa}^{-1}$. If the partial and the partial pressure of H₂O is also 6.70 kPa at equilibrium, what equilibrium mixture?

$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$

- Α 177 kPa
- В 184 kPa
- \mathbf{C} 190 kPa
- D 17.3 kPa
- Which of the following shows the correct units for K_p for the following

$$2ICl_3(g) \rightleftharpoons I_2(g) + 3Cl_2(g)$$

- Pa Α
- Pa-2
- C Pa²
- D There are no units
- Changes in conditions can affect chemical equilibria and may cause t constant to change. Which of the following statements correctly des temperature and pressure and the presence of a catalyst affect the following

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \Delta H = -92 \text{ kJ mg}$$

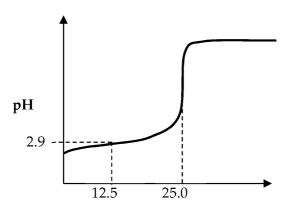
- K_p will:
- increase with increasing temperature
- increase with increasing pressure
- be unchanged if a catalyst is added
- K_p will:
- decrease with increasing temperature
- increase with increasing pressure
- increase if a catalyst is added
- K_p will:
- increase with increasing temperature
- be unchanged with increasing pressure
- be unchanged if a catalyst is added
- K_p will:
- decrease with increasing temperature
- be unchanged with increasing pressure
- be unchanged if a catalyst is added

Topic 2: Acid-Base Equilibria

- 1. Which of the following equations are Bronsted–Lowry acid–base equ
 - 1: $H_3PO_4 + H_2O \rightleftharpoons H_2PO_4^- + H_3O^+$
 - 2: $CH_3OH + HCl \rightleftharpoons CH_3OH_2^+ + Cl^-$
 - 3: $C_2H_4 + H_2 \rightleftharpoons C_2H_6$
 - A Only 1
 - B Only 1 and 2
 - C Only 2 and 3
 - **D** 1, 2 and 3
- 2. What would be the pH of a solution in which the concentration of hyd 1.45 mol dm⁻³?
 - **A** 0.161
 - **B** 0.372
 - **C** -0.161
 - **D** -0.372
- 3. Which of the following is not a Brønsted–Lowry acid–base reaction?
 - $A H_2 + O_2 \longrightarrow H_2O$
 - **B** $H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + 2H_2O$
 - C $HCl + H_2O \rightarrow H_3O^+ + Cl^-$
 - D $HNO_3 + NH_3 \rightarrow NH_4NO_3$
- 4. Which of the following is the correct mathematical equation for pKaf
 - **A** $pK_a = [H^+]^2/[HCOOH]$
 - $\mathbf{B} \quad pK_a = -\log([H^+]/[HCOOH])$
 - C $pK_a = -log([H^+]^2/[HCOOH])$
 - \mathbf{D} $pK_a = [H^+]/[HCOOH]$
- 5. Which is the only correct statement?
 - **A** High values of pKa indicate very strong acids.
 - **B** Concentrated solutions of acids with large Ka values will have h
 - C Both pH and pKa values are affected by changing the concentrat
 - D There are more H⁺ ions in a 1 mol dm⁻³ solution of an acid with a 1 mol dm⁻³ solution of an acid with a low Ka value.
- 6. What is the pH of a solution of a strong acid, HA, with a concentration
 - **A** 1.3
 - **B** 3.0
 - **C** -1.3
 - **D** -3.0

- 7. If a solution of a strong *diprotic* acid (i.e. an acid that dissociates to gi mole of acid molecule) has a pH of 1.0, what is the concentration of the strong diprotic acid (i.e. an acid that dissociates to gi mole of acid molecule) has a pH of 1.0, what is the concentration of the strong diprotic acid (i.e. an acid that dissociates to gi mole of acid molecule) has a pH of 1.0, what is the concentration of the strong diprotic acid (i.e. an acid that dissociates to gi mole of acid molecule) has a pH of 1.0, what is the concentration of the strong diprotic acid (i.e. an acid that dissociates to gi mole of acid molecule) has a pH of 1.0, what is the concentration of the strong diprotic acid (i.e. an acid that dissociates to gi mole of acid molecule) has a pH of 1.0, what is the concentration of the strong diprotic acid (i.e. an acid that dissociates to gi mole acid molecule) has a pH of 1.0, what is the concentration of the strong diprotic acid (i.e. acid molecule) has a pH of 1.0, what is the concentration of the strong diprotic acid (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a pH of 1.0 acid molecule (i.e. acid molecule) has a
 - **A** 0.10 mol dm⁻³
 - **B** 0.20 mol dm⁻³
 - C 0.05 mol dm⁻³
 - D 2.0 mol dm⁻³
- 8. A solution of potassium hydroxide, KOH, has a pH of 12.3. What is the
 - **A** 0.02 mol dm⁻³
 - **B** 0.01 mol dm⁻³
 - C 1.7 mol dm⁻³
 - **D** 1.09 mol dm⁻³
- 9. A solution of a weak acid, HA, with a concentration of 0.125 mol dm the pK_a value for this acid?
 - **A** 3.42
 - **B** 3.83×10^{-4}
 - C 7.74
 - **D** 1.87×10^{-8}
- 10. The diagram below shows an acid–base titration curve. Which comcould produce this curve?

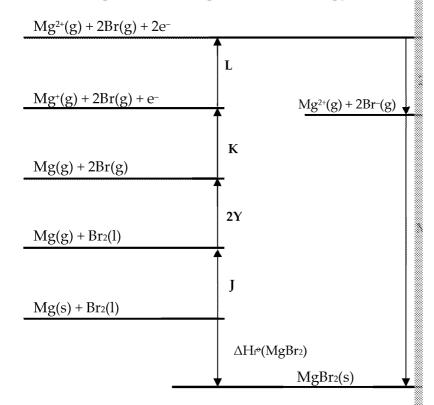
- A Ethanoic acid and ammonia
- B Sulfuric acid and ammonia
- C Ethanoic acid and sodium hydroxide
- D Sulfuric acid and sodium hydroxide



11. The table below shows the pH range at which various indicators chor indicators would give an accurate result in a titration of ethanoic

Indicator	pH range ove
Indicator 1	
Indicator 2	
Indicator 3	

- A Indicator 1 only
- **B** Indicators 1 and 2
- C Indicators 2 and 3
- **D** None of the indicators
- 12. Use the following pH curve to calculate the K_a of the acid involved:


Volume of alkali added /cm³

- **A** 2.90
- **B** 12.5
- C 794
- **D** 1.26×10^{-3}
- 13. Which of the following methods could produce a buffer solution?
 - 1: A solution of a weak acid mixed with a solution of a strong acid
 - 2: A solution of a weak acid mixed with a solution of a salt of the
 - 3: A solution of a weak acid mixed with a solution of a salt of a st
 - A Only 1
 - B Only 2
 - C Only 3
 - **D** 1, 2 and 3
- 14. A buffer solution made by mixing equal volumes of ethanoic acid as solutions, both with a concentration of 0.50 mol dm⁻³, has a pH of 4.3 acid dissociation constant, K_a, for ethanoic acid?
 - **A** $1.74 \times 10^{-5} \text{ mol dm}^{-3}$
 - **B** $5.75 \times 10^4 \,\mathrm{mol}\,\,\mathrm{dm}^{-3}$
 - C $6.04 \times 10^{-10} \text{ mol dm}^{-3}$
 - $D = 4.76 \times 10^{-5} \text{ mol dm}^{-3}$

Topic 3: Energetics II

- 1. Which of the following can correctly define *lattice energy*?
 - 1: The internal energy of an ionic lattice
 - 2: The enthalpy of dissociation of an ionic lattice
 - 3: The enthalpy of formation of an ionic lattice
 - A 1 only
 - **B** 1 and 2 only
 - C 2 and 3 only
 - **D** 1, 2 and 3
- 2. Which of the letter expressions corresponds to the enthalpy of atomis

A 2Y

B Y

 \mathbf{C} 2Z

D Z

3. Calculate the enthalpy of formation of magnesium bromide using the the data below.

Enthalpy change	Energy (kJ mo
J	+148
Y	+224
K	+738
L	+1451
Z	-325
M	-2440

- A +529 kJ mol⁻¹
- **B** +305 kJ mol⁻¹
- C -529 kJ mol⁻¹
- D -305 kJ mol⁻¹
- 4. Use the data below to calculate the enthalpy of hydration of ammo

 Δ LEH (NH4NO₃) = 646 kJ mol⁻¹; Δ SolH (NH4NO₃) = 25 kJ mol⁻¹; Δ

- **A** +307 kJ mol⁻¹
- **B** -307 kJ mol⁻¹
- C -357 kJ mol⁻¹
- D +357 kJ mol⁻¹
- 5. Use the data below to put the ionic compounds in order from those to those with **least** covalent character.

Compound	Theoretic Lattice Energy /kJ mol ⁻¹	В
LiCl	834	
NaCl	910	
NaI	682	
AgCl	864	

- A AgCl, NaI, LiCl, NaCl
- B NaCl, AgCl, LiCl, NaI
- C NaI, LiCl, AgCl, NaCl
- D AgCl, LiCl, NaI, NaCl
- 6. Which of the following equations correctly represents the first elect
 - A $Cl(g) + e^- \rightarrow Cl^-(g)$
 - **B** $Cl_2(g) + 2e^- \rightarrow 2Cl^-(g)$
 - C $\frac{1}{2}Cl_2(g) + e^- \rightarrow Cl^-(g)$
 - $\mathbf{D} \qquad \operatorname{Cl}_2(g) + e^- \rightarrow \operatorname{Cl}^-(g) + \operatorname{Cl}(g)$

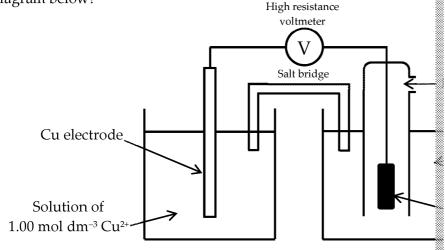
- A The enthalpy change when one mole of gaseous sodium ions diswater
- **B** The enthalpy change when one mole of sodium ions in a solid io one mole of water
- C The enthalpy change when one mole of sodium ions in a solid io enough water to form an infinitely dilute solution
- **D** The enthalpy change when one mole of gaseous sodium ions disform an infinitely dilute solution
- 8. Which of these reactions involves an increase in entropy?
 - A $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - **B** $Pb(NO_3)_2(aq) + 2KI(aq) \rightarrow PbI_2(s) + 2KNO_3(aq)$
 - C $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(g)$
 - **D** $\operatorname{SiH_4}(g) + \operatorname{O_2}(g) \rightarrow \operatorname{SiO_2}(s) + 2\operatorname{H_2}(g)$
- 9. Calculate the change in entropy of the following reaction, using the

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

	Molar entropy /J K ⁻¹ mol ⁻¹
CaCO ₃ (s)	92.9
CaO(s)	38.3
CO ₂ (g)	214

- A -82.8 J K⁻¹ mol⁻¹
- B +159.4 J K⁻¹ mol⁻¹
- C -159.4 J K⁻¹ mol⁻¹
- D +82.8 J K⁻¹ mol⁻¹
- 10. Use the data in the table below to select which of the reactions is/are

	Reaction	Enthalpy change, ΔΗ /kJ mol ⁻¹	Entropy c
1.	$CaCO_3 \rightarrow CaO + CO_2$	178	1
2.	$CaO + H_2O \rightarrow Ca(OH)_2$	-82	-2
3.	$NH_4NO_3(s) \rightarrow NH_4NO_3(aq)$	25	1

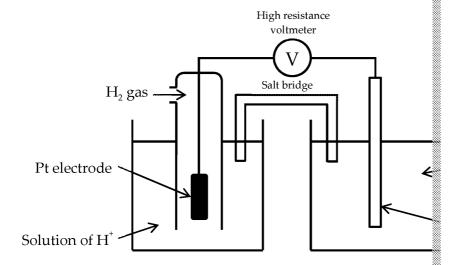

- A Reaction 1 only
- **B** Reactions 1 and 2 only
- C Reactions 2 and 3 only
- **D** Reactions 1, 2 and 3

Topic 4: Redox II

- 1. Which of the following statements is correct according to the IUPAC equations for electrode reactions?
 - A Half-equations should show only one electron on the left-hand s
 - **B** Half-equations should show only one electron on the right-hand
 - C Half-equations should always be written as reduction processes.
 - D Half-equations should always be written as oxidation processes.
- 2. Which is the correct conventional representation of the electrochemic diagram below?

- **A** $Pt(s) |H_2(g)|H^+(aq)||Cu^{2+}(aq)|Cu(s)$
- **B** $Cu(s)|Cu^{2+}(aq)|H_2(g)|H^+(aq)|Pt(s)$
- C $Cu(s)|H_2(g)|H^+(aq)||Cu^{2+}(aq)|Pt(s)$
- **D** $Cu(s)|H_2(g)||Cu^{2+}(aq)|2H^{+}(aq)|Pt(s)$
- 3. Which of the following can affect the value of the electrode potential

$$Pt(s) | Cl_2(g) | Cl_1(aq) |$$

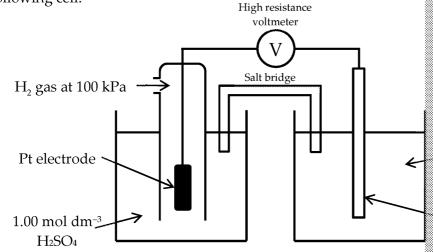

- 1: The temperature of the room
- 2: The pressure of the chlorine gas
- 3: The concentration of the chloride ions
- A Only 1
- **B** Only 1 and 3
- C Only 2 and 3
- **D** 1, 2 and 3

4. Use the data given below to select which of the combinations of reaction potential of +1.55 V.

Half-cell					Standard electro
Pb ²⁺ (aq)	+	2e-	\rightleftharpoons	Pb(s)	-() () -1
Ag+(aq)	+	e-	\rightleftharpoons	Ag(s)	Ć.
Al ³⁺ (aq)	+	3e-	\rightleftharpoons	Al(s)	-3

- A Pb(s) and Ag⁺(aq)
- **B** Pb(s) and Al $^{3+}$ (aq)
- C Al(s) and $Pb^{2+}(aq)$
- **D** Ag(s) and Pb $^{2+}$ (aq)
- 5. Use the data given below to calculate the cell potential for the follow conditions are standard):

Half-cell


Standard electro

$$2H^{+}(aq) + 2e^{-} \rightleftharpoons H^{2}(g)$$

 $Co^{2+}(aq) + 2e^{-} \rightleftharpoons Co(s)$
 $Co^{3+}(aq) + e^{-} \rightleftharpoons Co^{2+}(aq)$

- **A** -0.28 V
- **B** 1.92 V
- C 0.28 V
- **D** -1.92 V

6. A student measures the electrode potential for the iron(III)/iron(II) following cell:

Her lab partner says that what has been measured is not a *standard* the conditions is non-standard?

- A Hydrogen gas is at the wrong pressure.
- **B** The temperature is wrong.
- C The concentrations of the iron ions are wrong.
- **D** The concentration of H⁺ ions is wrong.
- 7. Which pair of half-equations below shows correct electrode reaction oxygen fuel cell, assigned to the correct electrodes?

Anode: $H_2 \rightarrow 2H^+ + 2e^-$

- A Positive electrode: $H_2 + 4OH^- \rightarrow H_2O + 2e^-$ Negative electrode: $O_2 + H_2O + 4e^- \rightarrow 4OH^-$
- B Positive electrode: $O_2 + H_2O + 4e^- \rightarrow 4OH^-$ Negative electrode: $H_2 + 4OH^- \rightarrow H_2O + 2e^-$
- C Positive electrode: $H_2 \rightarrow 2H^+ + 2e^-$ Negative electrode: $H_2O + 2e^- \rightarrow 2OH^-$
- D Positive electrode: $2H^+ + 2e^- \rightarrow H_2$ Negative electrode: $2OH^- \rightarrow H_2O + 2e^-$
- 8. Under standard conditions, the cell potential, E^{θ} , for each of the two

$$Co(s) | Co^{2+}(aq) | | Cu^{2+}(aq) | Cu(s) E^{\theta} = +0.$$

 $Ag(s) | Ag^{+}(aq) | | Sn^{2+}(aq) | Sn(s) E^{\theta} = -0.9$

Use this information to decide which of the following shows the cooccur if these cells were set up.

A
$$Co(s) + Cu^{2+}(aq) \rightarrow Co^{2+}(aq) + Cu(s)$$
 and $Sn^{2+}(aq) + 2Ag(s) \rightarrow Sn(s)$

$$\textbf{B} \quad \text{Co$^{2+}$(aq)$} + \text{Cu$(s)$} \rightarrow \text{Co$(s)$} + \text{Cu$^{2+}(aq)} \text{ and } \text{Sn$^{2+}$(aq)$} + 2\text{Ag$(s)$} \rightarrow \text{Sn$(s)$}$$

C
$$Co^{2+}(aq) + Cu(s) \rightarrow Co(s) + Cu^{2+}(aq)$$
 and $Sn(s) + 2Ag^{+}(aq) \rightarrow Sn^{2+}$

D
$$Co(s) + Cu^{2+}(aq) \rightarrow Co^{2+}(aq) + Cu(s) \text{ and } Sn(s) + 2Ag^{+}(aq) \rightarrow Sn^{2+}$$

Positive electrode: $3O_2 + 12H^+ + 12e^- \rightarrow 6H_2O$

Which of these is the correct half-equation for the reaction at the negasuch a way that it will combine with the positive electrode half-equation as it is shown above?

- A $2CH_3OH + 2H_2O \rightarrow 2CO_2 + 12H^+ + 12e^-$
- **B** $CH_3OH + H_2O \rightarrow CO_2 + 6H^+ + 6e^-$
- C $CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$
- **D** $2CO_2 + 12H^+ + 12e^- \rightarrow 2CH_3OH + 2H_2O$
- 10. Which pair of statements correctly describes *both* a benefit and a risk fuel cell?
 - **A** The fuel cell produces harmful polluting gases. The fuel cell uses a cheap gas as the fuel.
 - **B** The fuel cell produces no polluting gases. The fuel cell uses an explosive gas as the fuel.
 - C The fuel cell produces toxic waste products. The fuel cell uses a sustainable fuel.
 - **D** The fuel cell produces waste products that are easy to capture an The fuel cell is less efficient than a combustion engine using the s

Topic 5: Transition Metals

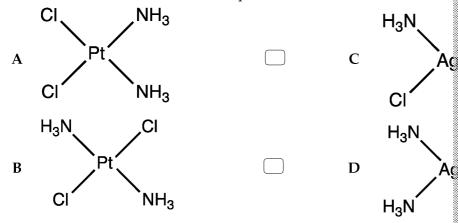
- 1. Which of these shows the correct electronic configuration for a coppe
 - A [Ar]3d94s2
 - **B** [Ar]3d¹⁰4s¹
 - C [Kr]3d94s2
 - D [Kr]3d104s1
- 2. Which of the following could correctly describe [NiCl4]²⁻? Give all of
 - 1: It is a tetrahedral complex ion.
 - 2: It has a coordination number of 4.
 - 3: It has cis-trans isomers.
 - **A** 1 only
 - B 2 only
 - C 1 and 2
 - **D** 1, 2 and 3
- 3. In the ion shown below, what is the most accurate term to describe the in bold)?

[CuCl₄]²⁻

- A Ligand
- **B** Molecule
- C Atom
- **D** Complex
- 4. Why is zinc not considered to fit the definition of a transition elemen
 - **A** It is not in the d block of the periodic table.
 - **B** It is not a good catalyst.
 - C It does not have enough oxidation states.
 - **D** Zinc ions always have a full d-subshell.
- When an orange solution of chromium(VI) ions reacts with zinc metagreen and then to blue as the chromium(VI) ions are converted to chromium(II) ions.

Which of these characteristics of transition elements does this demor

- 1: Catalytic behaviour
- 2: Coloured ions
- 3: Variable oxidation states
- **A** 1 only
- **B** 2 only
- C 2 and 3 only
- **D** 1, 2 and 3


$$[Cu(H_2O)_6]^{2+}(aq) + 4NH_3(aq) = [Cu(H_2O)_2(NH_3)_4]^{2-}(aq)$$

- A Complete ligand substitution with a change of coordination num
- B Incomplete ligand substitution with a change of coordination nu
- C Complete ligand substitution without a change of coordination
- D Incomplete ligand substitution without a change of coordination
- 7. What is the name for the *specific* explanation of the increased stability correplacing monodentate ligands in complex ions?
 - A Ligand substitution
 - **B** Redox
 - C Autocatalysis
 - **D** The chelate effect
- 8. When concentrated hydrochloric acid is added to an aqueous solution following reaction happens:

$$[Cu(H_2O)_6]^{2+}(aq) + 4Cl^{-}(aq) \rightleftharpoons [CuCl_4]^{2-}(aq) + 6$$

Which is the correct explanation for why four chloride ions replace s

- **A** Chloride ions have a negative charge, causing them to repel one four can be in a complex ion.
- **B** Chloride ions are larger than water molecules, so fewer of them can ion.
- C Chloride ions are multidentate, and so four of them in a complex coordination number as six monodentate ligands.
- D Chloride ions form stronger bonds to copper than water molecular needed to make a stable complex.
- 9. Which is the correct structure of cisplatin?

- 10. Which of the following is **least likely** to affect the difference in energy state and excited state of d-electrons in a transition metal complex is
 - A A change in the oxidation state of the transition metal
 - **B** A change in the coordination number of the complex ion
 - C A change from cis isomer to trans isomer
 - D A change of ligands in the complex ion

11. When the ion VO₂⁺ is reacted with zinc and hydrochloric acid in ar solution turns blue then green then violet and finally returns to a general explanation for these observations?

- A Zinc reduces the vanadium(V) species to vanadium(IV) then vanadium(II) and finally to vanadium(I).
- **B** Zinc reduces the vanadium(V) species to vanadium(IV) then vanadium(II), which oxidises in the air back to vanadium(III)
- C Zinc reduces the vanadium(IV) species to vanadium(III) ther vanadium(I), which oxidises in the air back to vanadium(II).
- **D** Zinc reduces the vanadium(VI) species to vanadium(V) then vanadium(III) and finally to vanadium(II).
- 12. What chemical process is responsible for the toxicity of carbon mono
 - A The oxidation of CO to CO₂ by oxygen in the blood stream
 - **B** The dissociation of CO to form dangerous oxygen radicals in t
 - C The oxidation of iron(II) to iron(III) by CO
 - D The replacement of O₂ by CO as a ligand in haem
- 13. Which of the following correctly shows an iron species acting as a reaction between solutions of KI and Na₂S₂O₈?

A
$$2Fe^{2+}(aq) + S_2O_8^{2-}(aq) \rightarrow Fe^{3+}(aq) + 2SO_4^{2-}(aq)$$

 $2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(aq)$

B
$$S_2O_8^{2-}(aq) + 2I^{-}(aq) \rightarrow Fe 2SO_4^{2-}(aq) + I_2(aq)$$

C
$$2Fe^{3+}(aq) + S_2O_8^{2-}(aq) \rightarrow Fe^{2+}(aq) + 2SO_4^{2-}(aq)$$

 $2Fe^{2+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{3+}(aq) + I_2(aq)$

D
$$S_2O_{8^2}(aq) + 2I(aq) \rightarrow FeCl_2 2SO_{4^2}(aq) + I_2(aq)$$

- 14. In what capacity does iron metal act in the Haber process?
 - A As a homogenous catalyst
 - **B** As a heterogeneous catalyst
 - **C** As an autocatalyst
 - **D** As a support medium for other catalysts
- 15. Which is the correct description of the observations that you would iron(III) nitrate and ammonium iron(II) sulfate are added to sodium
 - **A** The iron(III) compound would produce an orange/brown preceffervescence. The iron(II) compound would produce a green effervescence.
 - B The iron(III) compound would produce a green precipitate and effervescence. The iron(II) compound would produce an orang no effervescence.
 - C The iron(III) compound would produce a green precipitate with iron(II) compound would produce an orange/brown precipitate effervescence.
 - **D** The iron(III) compound would produce an orange/brown precent effervescence. The iron(II) compound would produce a green would be effervescence.

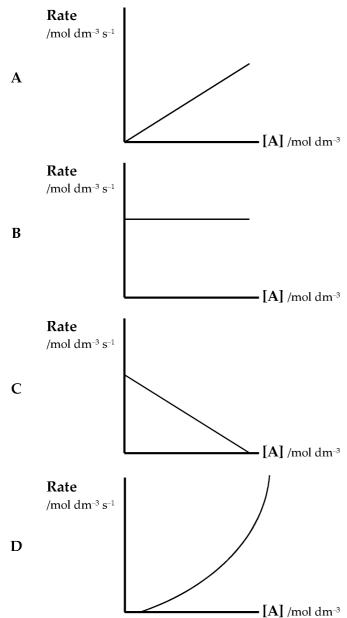
Topic 6: Kinetics II

1. Use the initial rates data below to help you select the correct rate equ

 $H_2SeO_3(aq) + 4I^-(aq) + 4H^+(aq) \rightarrow Se(s) + 2I_2(aq)$

	[H2SeO3] /mol dm-3	[I-] /mol dm-3	[H+] /mol dm-3	Ir
1	0.0010	0.10	0.10	
2	0.0020	0.10	0.10	
3	0.0010	0.20	0.10	
4	0.0010	0.10	0.20	

- **A** Rate = $k[H_2SeO_3][I^-][H^+]^2$
- **B** Rate = $k[H_2SeO_3][I^-][H^+]$
- C Rate = $k[H_2SeO_3][I^-]^2[H^+]^2$
- **D** Rate = $k[H_2SeO_3][H^+]$
- 2. The rate equation for the reaction between two compounds, A and B Which of the following factors would cause the value of the rate cons
 - 1: Increasing temperature
 - 2: Increasing the concentration of A
 - 3: Increasing the concentration of B
 - **A** 1 only
 - **B** 1 and 2 only
 - C 2 and 3 only
 - **D** 1, 2 and 3
- 3. Which of the following rate equations is for a reaction that is second
 - **A** Rate = $k[A]^2[B]^2$
 - **B** Rate = $k[A][B]^2$
 - C Rate = k[A][B]
 - **D** Rate = $k[A]^2[B]$
- 4. The rate of the reaction between H₂O₂ and I₂ is given by the equation initial rates data below to choose the correct value for the rate constant.


[H ₂ O ₂] / mol dm ⁻³	[I ₂] / mol dm ⁻³	Rate /
0.260	0.320	

- A 0.0208 dm³ mol⁻¹ min⁻¹
- **B** 3.00 dm³ mol⁻¹ min⁻¹
- C 0.333 dm³ mol⁻¹ min⁻¹
- D 48.1 dm³ mol⁻¹ min⁻¹

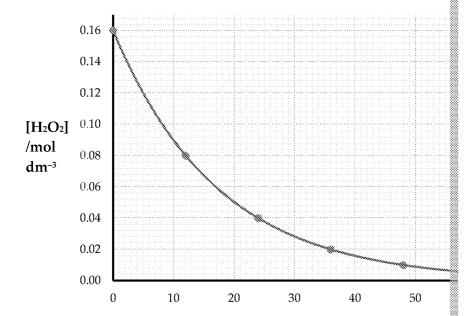
5. If a reaction of a single reactant, A, is first order, which graph represerreaction against concentration of A?

6. In the reaction of sodium hydrogen carbonate solution with hydrogen produced. The data below shows how long a series of reactions to carbon dioxide.

The reaction is first order with respect to both hydrogencarbonate Use this information to predict the missing value for the time taker

Experiment	[HCO3-] /mol dm-3	[H+] /mol dm-3
1	0.005	0.125
2	0.010	0.125
3	0.005	0.250

A 312


B 39

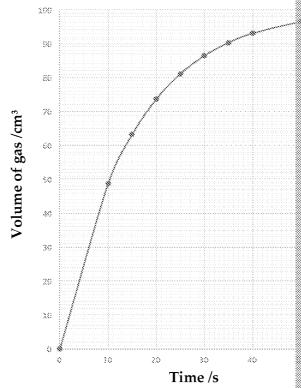
C 156

D 78

7. A concentration—time graph for the first-order decomposition of hybelow. Use this graph to determine the rate of decomposition of hyafter the start of the reaction.

- **A** 797 mol dm⁻³ s⁻¹
- **B** $1.25 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1}$
- $C = 0.012 \ mol \ dm^{-3} \ s^{-1}$
- **D** 83.3

8. Which of the following techniques is an *initial rate method* (sometim could be used to measure the rate of the reaction between peroxodi. The equation for this reaction is:


$$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$$

- A Perform the reaction in a tube in a colorimeter. At regular intervalues from the colorimeter and plot an absorbance—time graph
- **B** Use a conductivity meter to monitor the electrical conductivity Record conductivity values at regular intervals and plot a conductivity
- C Add a small quantity of starch to the reaction mixture to form a complex with the iodine that is formed. Time how long it take
- D Add a small quantity of reducing agent to the reaction mixture initially formed. Add starch to indicate the presence of iodine. agent is exhausted, the colour of iodine will be seen and the time

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

The volume of gas produced in this reaction was recorded at regular graph below.

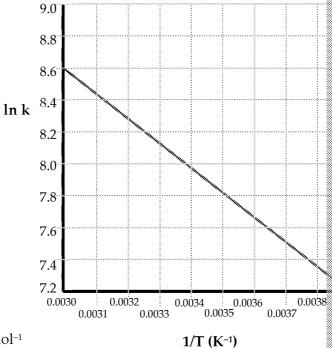
What is the initial rate of the reaction?

- **A** $0.2 \text{ cm}^3 \text{ s}^{-1}$
- **B** $49 \text{ cm}^3 \text{ s}^{-1}$
- C $1.6 \text{ cm}^3 \text{ s}^{-1}$
- **D** $4.9 \text{ cm}^3 \text{ s}^{-1}$
- 10. Sodium thiosulfate reacts with hydrochloric acid according to the fo

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + SO_2(g) + S$$

Which of the following techniques could be used to continuously mo

- A Measure the rate at which the Na₂S₂O₃ is used up by measuring vanishes.
- **B** Measure the rate at which the HCl is used up by measuring how solution increases.
- C Measure the rate at which the NaCl is produced by measuring lacolour appears.
- **D** Measure the rate at which the SO₂ is produced by measuring hosolution decreases.



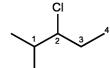
The decomposition of hydrogen peroxide, $2H_2O_2 \rightarrow 2H_2O + O_2$, is call The rate equation for this reaction is found to be: Rate = $k[H_2O_2][I^-]$.

Which of the following is a possible mechanism for this reaction that rate equation?

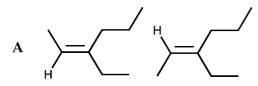
- $2H_2O_2 + I^- \rightarrow 2H_2O + IO_2^-$ **SLOW step** $IO_2^- \rightarrow O_2 + I^- FAST step$
- $2H_2O_2 + I^- \rightarrow 2H_2O + IO_2^-$ FAST step $IO_2^- \rightarrow O_2 + I^- SLOW step$
- $H_2O_2 + I^- \rightarrow H_2O + IO^-$ **SLOW step** $H_2O_2 + IO^- \longrightarrow H_2O + O_2 + I^-$ FAST step
- $H_2O_2 + I^- \longrightarrow H_2O + IO^-$ **FAST step** $H_2O_2 + IO^- \longrightarrow H_2O + O_2 + I^-$ **SLOW step**
- The Arrhenius equation, $k = Ae^{-Ea/RT}$, shows how the rate of a reaction constant, k) is affected by temperature, T. Which of the following st explains this relationship?
 - A As T increases, a greater proportion of particles have energy great increases linearly.
 - В As T increases, particles move with higher velocity, and k decre
 - As T increases, particles collide more frequently and a greater p have energy greater or equal to Ea, and k increases exponential
 - As T increases, particles move with higher velocity, and k decre
- 13. One form of the Arrhenius equation is: $\ln k = -E_a/RT + \ln A$. Use the correct values for the activation energy, Ea. Take the value of R to be

A
$$E_a = 12.9 \text{ kJ mol}^{-1}$$

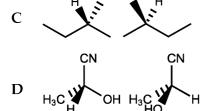
 $E_a = 1.56 \text{ kJ mol}^{-1}$


 \mathbf{C} $E_a = 7.35 \text{ kJ mol}^{-1}$

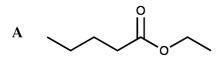
COPYRIGHT **PROTECTED**

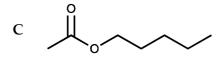



Topic 7: Organic Chemistry II


1. Which of the carbons labelled is chiral in the following molecule?

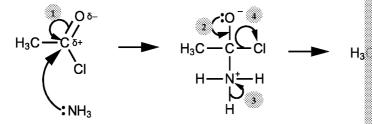
- **A** 1
- **B** 2
- **C** 3
- D 4
- 2. Which of the following pairs of molecules are optical isomers?




- 3. What is the best definition of the term *enantiomers*?
 - A A pair of isomers that are mirror images of each other
 - **B** A pair of isomers that have the same structural formula but differ
 - C A pair of stereoisomers that do not have free rotation
 - **D** A pair of structural isomers that have four different groups attacl
- 4. Which of the following compounds can be reacted with sodium boro produce *propan-1-ol*?
 - 1: Propanone
 - 2: Propanal
 - 3: Propanoic acid
 - **A** 1 and 2
 - **B** 1 and 3
 - C 2 only
 - **D** 1, 2 and 3

- 5. By which type of mechanism does a cyanide ion react with a keton
 - A Nucleophilic addition
 - **B** Electrophilic addition
 - C Nucleophilic substitution
 - D Electrophilic substitution
- 6. Which is the correct product of the reaction that occurs when KCN by dilute acid?
 - A 2-hydroxybutanenitrile
 - **B** 2-hydroxypropanenitrile
 - C butanenitrile
 - **D** propanenitrile
- 7. Which of the following compounds would react with KCN followed mixture of enantiomers?
 - 1: Propanal
 - 2: Butanone
 - 3: Propanone
 - A 1 only
 - **B** 1 and 2 only
 - C 2 and 3 only
 - **D** 1, 2 and 3
- 8. Which of the following esters is ethyl pentanoate?

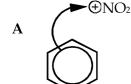
 $B \longrightarrow 0$



 $D \longrightarrow 0$

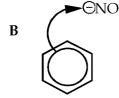
- 9. What is the correct name of the product of the reaction between pr
 - A Propyl ethanoate
 - **B** Propanoyl ethanoate
 - C Ethyl propanoate
 - **D** Ethanoyl propanoate

- A Ethyl propanoate
- **B** N-methylethanamide
- C Ethyl benzoate
- **D** N-ethylmethanamide
- 11. Which of the following arrows in the mechanism is **incorrect**?

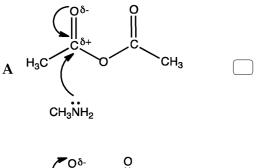

- **A** 1
- **B** 2
- **C** 3
- **D** 4
- 12. Which of the following is a correct product of the nucleophilic additable between an ethanoyl chloride and excess ethylamine?

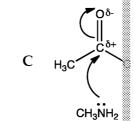
- 13. Which of the following pairs of substances could react to form bio
 - A Methanoic acid and vegetable oil
 - **B** Methanoic acid and crude oil
 - C Methanol and vegetable oil
 - D Methanol and crude oil

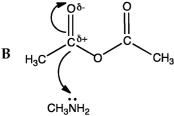
Topic 8: Organic Chemistry III

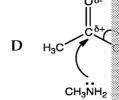

- 1. Which of the following pieces of evidence helped to convince the scientification between molecules contain a delocalised π -system?
 - A The C–C bonds in benzene were found to be exactly the same le
 - **B** Three of the C–C bonds in benzene were found to be longer that suggesting the structure has alternating double and single bond
 - C The C–C bonds in benzene were found to be shorter than typical than typical double bonds.
 - **D** Attempts to measure the C–C bond lengths in benzene failed be carbon atoms are not fixed.
- 2. Which of the following equations regenerates the catalyst in the nitration
 - A $HSO_4^- + H^+ \rightarrow H_2SO_4$
 - **B** $NO_{3^-} + H^+ \rightarrow HNO_3$
 - C $SO_3^- + H_2O \rightarrow H_2SO_4$
 - $D \qquad NO_{2^{+}} + H_{2}O \rightarrow HNO_{3}$
- 3. Which of these is a correct step in the mechanism of the reaction of b presence of sulfuric acid?

C

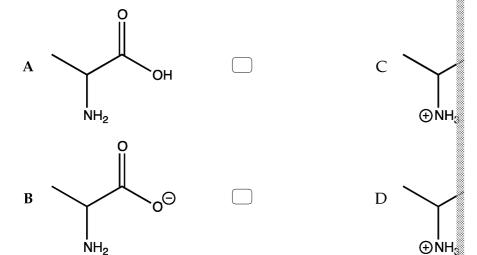



D


- 4. Aromatic compounds can be acylated using a Friedel–Crafts catalyst equations correctly shows how the catalyst helps to form the electrop ring in an acylation reaction?
 - A RCOBr + HNO₃ \rightarrow RCO⁺ + NO₃⁻ + HBr
 - **B** RCOBr + FeBr₃ \rightarrow RCO⁺ + FeBr₄⁻
 - C $RCH_2Br + HNO_3 \rightarrow RCH_2^+ + NO_3^- + HBr$
 - **D** $RCH_2Br + FeBr_3 \rightarrow RCH_2^+ + FeBr_4^-$
- 5. Which of the following materials can be made by nitrating the aroma methylbenzene?
 - **A** A dye
 - **B** A painkiller
 - C A plastic
 - D An explosive

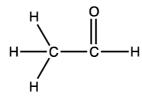


- 6. Which of the following statements about the base strength of ammorphenylamine is/are correct?
 - 1: Ammonia is a stronger base than methylamine.
 - 2: Ammonia is a stronger base than phenylamine.
 - 3: Methylamine is a stronger base than phenylamine.
 - **A** 1 only
 - **B** 2 only
 - C 1 and 2 only
 - D 2 and 3 only
- 7. Which of the following is a correct step in the mechanism of the real ethanoic anhydride?



8. Which of the following structures is the correct one for the amino a (i.e. in alkaline conditions)?

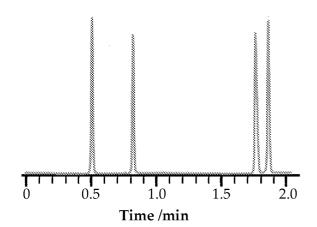
- 9. Which of the following is the correct general formula for an lpha-amin
 - A RCH2COOH
 - \mathbf{B} R(NH₂)CH₂
 - C NH₂CH₂RCHCOOH
 - D RCH(NH₂)COOH


- A NH2CH2COOH, NH2CH(SH)COOH, NH2CH(CH3)COOH
- B NH₂CH(CH₃)COOH and NH₂CH(CH₂SH)COOH
- C NH2CH2COOH, NH2CH(CH2SH)COOH, NH2CH(CH3)COC
- D NH2CH2COOH and NH2CH(SH)COOH
- Which of these syntheses of propanoic acid involves the least-hazar waste products?
 - A $CH_3CH_2COC1 + H_2O \rightarrow CH_3CH_2COOH + HC1$
 - B CH₃CH₂Cl + HCN \rightarrow CH₃CH₂CN + HCl; CH₃CH₂CN + 2H₂O + HCl \rightarrow CH₃CH₂COOH + NH₄Cl
 - C $3CH_3CH_2CH_2OH + Cr_2O_7^{2-} + 16H^+ \rightarrow 3CH_3CH_2COOH + 4Cr_3^{3}$
 - D $(CH_3CH_2CO)_2O + H_2O \rightarrow 2CH_3CH_2COOH$
- 12 Which of the following schemes is a possible way of making propylar
 - 1. CH₃CH₂Br → CH₃CH₂CN + NaBr
 - A 2. $CH_3CH_2CN \xrightarrow{LiAlH_4} CH_3CH_2CH_2NH_2$
 - 1. $CH_3CH_2Br \xrightarrow{NH_3} CH_3CH_2NH_3^+Br^-$
 - B 2. $CH_3CH_2NH_3^+Br^- \xrightarrow{OH^-} CH_3CH_2NH_2 + H_2O + Br^-$
 - 1. CH₃CH₂Br H₂O CH₃CH₂OH + HBr
 - C 2. CH₃CH₂OH CH₃NH₂ → CH₃CH₂CH₂NH₂ + H₂O
 - 1. $CH_3CH_2Br \xrightarrow{H^+} CH_2=CH_2 + HBr$
 - D 2. CH₂=CH₂ NH₃ CH₃CH₂NH₂

Topic 9: Modern Analytical Technique

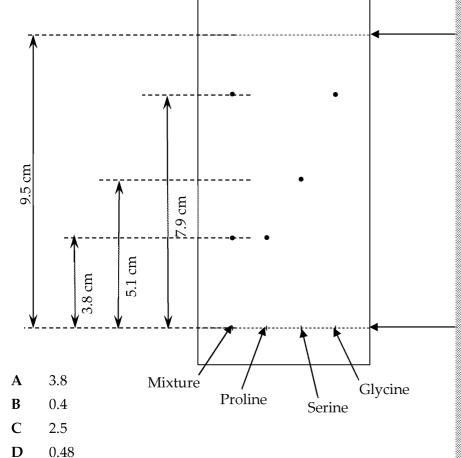
1. What would be the integration ratio of the two signals in the ¹H NMR shown below?

- **A** 1:3
- **B** 2:4
- C 1:2
- **D** 1:1
- 2. How many signals would you expect to see in the carbon-13 NMR spect
 - \mathbf{A}
 - **B** 2
 - **C** 3
 - **D** 4
- 3. Which isomer with the formula C₄H₈O would give the carbon-13 NMI The chemical shift values of the peaks are not needed to answer this q



- A Butanone, CH₃CH₂COCH₃
- B Cyclobutanol,
- C But-1-ene-2-ol, CH₂=C(OH)CH₂CH₃
- D Butanal, CH3CH2CH2CHO

Use the following gas chromatogram plus the table of data to identified the mixture.



Compound
methanol
ethanol
propan-1-ol
propan-2-ol
methanal
ethanal
propanal
propanone

- A Ethanal, ethanol, propanone, propan-2-ol
- B Methanol, ethanol, propanone, propan-2-ol
- C Methanal, ethanol, propanal, propan-2-ol
- D Ethanal, ethanol, propanal, propan-1-ol
- 5. A mixture of methanal and methanol is passed through a gas chror emerges first, followed by the methanol. Which of these statements for why this is?
 - 1: Methanol has a higher M_r value than methanal.
 - 2: Methanol has a higher affinity for the stationary phase tha
 - 3: Methanal has a higher affinity for the moving phase than
 - A 1 only
 - **B** 1 and 2 only
 - C 2 and 3 only
 - **D** 1, 2 and 3

6. The diagram below shows a TLC chromatogram run on a number of value for proline?

- 7. Mass spectroscopy resolves ions into their characteristic mass peaks mass-to-charge ratio. Which of the following elements is responsible
 - A Ion source
 - B Analyser tube
 - C Analyser
 - **D** Detector system
- 8. Which of the following elements is the basis of the separation of ions
 - A Mass
 - **B** Charge
 - C Molecular weight
 - **D** Mass-to-charge ratio

Section B Quick Answers

Topic 1: Equilibrium II

- 1. A
- 5. C
- 2. D
- 6. C
- 3. B
- 7. D

4. D

Topic 2: Acid-Base Equilibria

- 1. B
- 8. A
- 2. C
- 9. C
- 3. A
- 10. A
- 4. C
- 11. D
- 5. D
- 12. D
- 6. A
- 13. B14. A

7. C

Topic 3: Energetics II

- 1. C
- 6. A
- 2. B
- 7. D
- 3. D
- 8. C
- 4. B

Α

B
 C

Topic 4: Redox II

- 1. C
- 6. D7. B
- A
 D
- B
 D
- 4. C
- 8. D9. A
- 5. A
- 10. B

Topic 5: Transition Metals

- 1. B
- 9. A
- 2. C
- 10. C
- 3. A
- 11. B12. D
- 4. D5. C
- 13. A
- 6. D
- 14. B 15. A
- 7. D
- 8. B

Topic 6: Kinetics

- 1. A
- 2. A
- 3. C
- 4. B
- 5. A
- 6. D
- 7. B

Topic 7: Organic

- 1. B
- 2. D
- 3. A
- 4. C
- 5. A
- 6. A
- 7. B

Topic 8: Organic

- 1. C
- 2. B
- 3. A
- 4. B
- 5. D
- 6. D

Topic 9: Modern

- 1. A
- 2. B
- 3. B
- 4. A

