

Topic Tests: Fundamentals Tests – Set B

For AS / A Level Year 1 Edexcel Core Pure Further Mathematics

zigzageducation.co.uk

POD 9425

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

Contents

Thank You for Choosing ZigZag Education	ii
Teacher Feedback Opportunity	iii
Terms and Conditions of Use	iv
Teacher's Introduction	1
Cross-referencing Grid	2
Timings Sheet	3

Tests

Test 1.1b – Complex Numbers

Test 2.1b – Algebra and Functions

Test 3.1b – Volumes of Revolution

Test 4.1b – Matrices

Test 5.1b – Proof by Induction

Test 6.1b – Further Vectors

Solutions

Teacher's Introduction

Content

This pack contains 6 fundamentals level topic tests, which together form 'Set B' in a paired range of tests for the Edexcel Core Pure Further Mathematics AS / Year 1 A Level content.

Each test comes with fully worked solutions, containing helpful tips, hints and technique boxes for students struggling on a particular question. Answers should be given to three significant figures unless specified in the question.

These topic tests have been **fully cross-referenced** to the Pearson textbook for your convenience (see reference sheet on page 2). Each test has been designed to reflect the specification fully.

About the fundamentals tests

These **fundamentals** tests focus on isolating and testing the core skills of each topic. The questions are designed to use simple numbers and contexts **so that students can show what they can do,** and to allow you to easily identify any weaknesses.

Suggested use of the A and B tests

Each test in Set A has a corresponding test in Set B that features the same styles of questions but with different numbers. This allows for a variety of **flexible** uses including:

- **Test** → **Homework**: Students use test B as a homework to consolidate on areas of weakness identified from completing test A under test conditions in class.
- Homework → Test: Students revise as homework using test A before doing test B in class under test conditions.
- **Test** → **Classwork**: Students work through test B with teacher input to consolidate on areas of weakness identified from completing test A under test conditions in class.
- Classwork → Test: Students work through test A with teacher input, before checking their learning by completing test B under test conditions.

Timings

The recommended times for students to complete each test are given at the top of individual tests. Suggested times for our entire range of topic tests are also compiled in a table on the timings sheet for convenience (see page 3). For these fundamentals tests, the relevant times are the first two listed under each topic.

Calculator use

The effective use of a calculator is one of the objectives of the new specification and is encouraged for all the enclosed tests.

Also available from ZigZag Education

For students who are ready to go beyond the fundamentals, a complete set of **challenge** tests are available. 50% of the marks in these tests come from concepts covered in the fundamentals tests in order to reinforce learning and boost students' confidence, while the other 50% increases in difficulty and progresses the concepts covered.

To prepare students for the exam itself, our **expert** tests contain 25% repeated marks from the fundamentals and challenge tests, and 75% exam-style material with compound/multistep questions.

Free Updates!

Register your email address to receive any future free updates* made to this resource or other Maths resources your school has purchased, and details of any promotions for your subject.

* resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

Go to zzed.uk/freeupdates

Cross-referencing Grid

Topic	Edexcel spec. points	Subtopics
Complex Numbers	2.1–2.7	Imaginary and complex numbers, multiplying complex numbers, complex conjugation, roots of quadratic equations, solving cubic and quartic equations, Argand diagrams, modulus and argument, modulus-argument form of complex numbers, loci and regions in the Argand diagram
Algebra and Functions	4.1-4.3	Sums of natural num' su of squares and cubes, roots of polyr male linear transformations of roots
Volumes of Revolution	5.1	volution with Cartesian equations, adding and Lacting volumes, modelling with volumes
Matrices W	3.1–3.8	Matrices, matrix multiplication, determinants, inverting 2×2 and 3×3 matrices, solving systems of equations using matrices, linear transformations in two and three dimensions, reflections and rotations, enlargements and stretches, successive transformations, the inverse of a linear transformation
Proof by Induction	1.1	Proof by mathematical induction, proving divisibility results, proving statements involving matrices
Further Vectors	6.1–6.5	Equation of a line in three dimensions, equation of a plane in three dimensions, scalar product, calculating angles between lines and planes, points of intersection, finding perpendiculars

COPYRIGHT PROTECTED

Timings Sheet

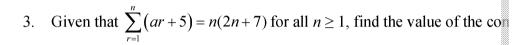
For the **fundamentals** tests, refer to the tests marked X.1a and X.1b. For the **challenge** tests, refer to the tests marked X.2a and X.2b. For the **expert** tests, refer to the tests marked X.3a and X.3b.

Topic test reference	Recommended time (minutes)	Topic test reference	Recommended time (minutes)	
Complex Numbers		Algebra an	d Functions	
1.1a	45	2.1a	40	
1.1b	45	2.1h	40	
1.2a	40	2 \	55	
1.2b	40	2.2b	55	
1.3a	6070	2.3a	70	
1.7	55	2.3b	70	
atrices		Proof by	Induction	
4.1a	40	5.1a	35	
4.1b	40	5.1b	35	
4.2a	50	5.2a	55	
4.2b	50	5.2b	55	
4.3a	50	5.3a	55	
4.3b	50	5.3b	55	

COPYRIGHT PROTECTED

- Evaluate the following sums, showing your reasoning in each case:
 - a) $\sum_{r=1}^{4} (r+2)$

 - c) $\sum_{r=1}^{48} (4r+3)$
 - d) $\sum_{r=1}^{128} r$
- Find r es r in terms of r



Show that $\sum_{n=1}^{n-1} r^2 = \frac{1}{6} n(An-1)(Bn-1)$ for some integers A and B, where You may use the formula $\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$

5. Evaluate
$$\sum_{r=1}^{19} r^3$$
 using the formula $\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$

- The quadratic equation $ax^2 + bx + c = 0$ has roots $\alpha = 2$ and $\beta = 5$ Find **integer** values for a, b and c
- The cubic equation $3x^3 9x^2 + 6x 2 = 0$ has roots α , β and γ . Without
 - a) $\alpha + \beta + \gamma$
 - b) $\alpha\beta + \alpha\gamma + \beta\gamma$
 - c) $\alpha\beta\gamma$
- The quadratic equation $(k-2)x^2 (k+2) + 3 = 0$ has roots α and β .
- The quartic equation $+8x^2 x + 2 = 0$ has roots α , β , γ and δ
 - a) $\alpha \mu + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta$ b) $\alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta$
- 10. The cubic equation $x^3 + 3x^2 + 4x + 2 = 0$ has roots α , β and γ . These re $\alpha\beta + \alpha\gamma + \beta\gamma = 4$, and $\alpha\beta\gamma = -2$. Without solving the equation:
 - a) find a cubic equation that has roots 2α , 2β and 2γ
 - b) find a cubic equation that has roots $\alpha 1$, $\beta 1$ and $\gamma 1$

COPYRIGHT **PROTECTED**

Preview of Questions Ends Here	
Preview of Questions Ends Here This is a limited inspection copy. Sample of questions ends here to avoid questions before they are set. See contents page for details of the res	
This is a limited inspection copy. Sample of questions ends here to avoid	
This is a limited inspection copy. Sample of questions ends here to avoid	

- $\sum_{r=1}^{n} (2r+1) = n(n+2)$ 1.
 - Show that the statement is true when n = 1

When n = 1 the left-hand side is $\sum_{n=0}^{\infty} (2r+1) = 2 \times 1 + 1 = 3$ A1

While the right-hand side is $1 \times (1+2) = 3$ A1 And so the statement is true when n = 1

Given that $\sum_{r=1}^{98} (2r+1) = 98 \times 100$, show that $\sum_{r=1}^{99} (2r+1) = 99 \times 101$ b)

$$\sum_{r=1}^{99} (2r+1) = \sum_{r=1}^{98} (2r+1) + (2 \times 99 + 1)$$

$$= 98 \times 100 + 199$$

$$= 9 999$$

Prove by induction that $\sum_{n=1}^{\infty} r = \frac{1}{2}n(n+1)$ for all positive integers n 2.

When n = 1: $\sum_{i=1}^{1} r = 1$ and $\frac{1}{2} n(n+1) = \frac{1}{2} \times 1 \times 2 = 1$ **B1**

first 🖟 the s prov n = 1

Tech has k

induc state

wher that 🕾 n = k

Tech

with 🖁 princ

Tech

by in

So the statement is true for n = 1

Assume the statement is true for n = k, so $\sum_{k=1}^{k} r = \frac{1}{2}k(k+1)$ M1

When n = k + 1:

$$\sum_{r=1}^{k+1} r = \sum_{r=1}^{k} r + (k+1)$$

$$= \frac{1}{2} k (k+1) + (k+1) \quad \mathbf{M1}$$

$$= \frac{1}{2} (k+1) (k+2)$$

$$= \frac{1}{2} (k+1) ((k+1)+1) \quad \mathbf{A1}$$

So if the statement is true when n = k, then it is true for n = k + 1

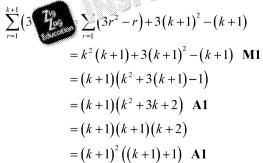
Since it is true for n = 1, by the principle of mathematical induction it is true for all

Prove by induction that $\sum_{n=0}^{\infty} (3r^2 - r) = n^2(n+1)$ for all positive integers n 3.

When n = 1: $\sum_{r=1}^{1} (3r^2 - r) = 3 \times 1^2 - 1 = 2$ and $n^2 (n+1) = 1^2 \times (1+1) = 2$ **B1** So the statement is true for n = 1

Assume the statement is true for $(3r^2 - r) = k^2(k+1)$ M1

When n = k + 1;



So if the statement is true when n = k, then it is true for n = k + 1

Since it is true for n = 1, by the principle of mathematical induction it is true for all

COPYRIGHT **PROTECTED**

4. Alice has not carried out the inductive step, i.e. she has failed to prove the statement assumed it is true when n = k B1 [1 Mark]

5. Prove by induction that, for all positive integers n, $f(n) = 5^n + 3$ is divisible by

When
$$n = 1$$
: $f(1) = 5^1 + 3 = 8 = 4 \times 2$ **B1**

So the statement is true for n = 1

Assume the statement is true for n = k, so $f(k) = 5^k + 3$ is divisible by 4 M1

$$f(k+1) = 5^{k+1} + 3 = 5 \times 5^k + 3$$

Alters step f(k +

So
$$f(k+1) - f(k) = (5 \times 5^k + 3) - (5^k + 3)$$
 M1 \blacktriangleleft
= $5 \times 5^k - 5^k$
= $5^k (5-1) = 4 \times 5^k$ A1

f(k + and f(k +

Hence $f(k+1) = f(k) + 4 \times 5^k$ **A1**

Tip:

Since f(k) is divisible by 4 and $4 \le \int_0^k s \, c$ so le by 4, their sum is divisible by 4. So if the statement is true $f(k) = \int_0^k s \, dk$ is true for n = k + 1

Since it is true for 1 by the principle of mathematical induction it is true for all

6. Prove auction that $M^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ for every positive integer n

$$\mathbf{M} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

When n = 1: left-hand side = $\mathbf{M}^1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and right-hand side = $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ **B1**

So the statement is true for n = 1

Assume the statement is true for n = k, so $\mathbf{M}^k = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ **M1**

$$\mathbf{M}^{k+1} = \mathbf{M}^k \mathbf{M}$$

$$= \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \mathbf{M1}$$

$$= \begin{pmatrix} 1 \times 1 + k \times 0 & 1 \times 1 + k \times 1 \\ 0 \times 1 + 1 \times 0 & 0 \times 1 + 1 \times 1 \end{pmatrix} \quad \mathbf{A1}$$

$$= \begin{pmatrix} 1 & k+1 \\ 0 & 1 \end{pmatrix} \quad \mathbf{A1}$$

So if the statement is true for n = k, then it is true for n = k + 1

Since it is true for n = 1, by the principle of mathematical induction it is true for even

COPYRIGHT PROTECTED

Preview of Answers Ends Here				
This is a limited in an action			sta la akina un anguana ta	
This is a limited inspection their assessm		ends here to stop studer		
	copy. Sample of answers	ends here to stop studer		
	copy. Sample of answers	ends here to stop studer		