

Topic Tests: Fundamentals Tests – Set B

For A Level Year 2 OCR A Pure Mathematics

zigzageducation.co.uk

POD 8960

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

Contents

Thank You for Choosing ZigZag Education	ii
Teacher Feedback Opportunity	iii
Terms and Conditions of Use	iv
Teacher's Introduction	1
Cross-referencing Grid	2
Tests	
Test 1 – Algebraic Methods	
Test 2 – Functions and Graphs	
Test 3 – Sequences and Series	
Test 4 – Binomial Expansion	

Test 5 – Radians

Test 6 – Trigonometry Part I

Test 7 – Trigonometry Part II

Test 8 – Parametric Equations

Test 9 – Differentiation Part I

Test 10 – Differentiation Part II

Test 11 – Numerical Methods

Test 12 – Integration Part I

Test 13 – Integration Part II

Test 14 – Vectors

Solutions

Teacher's Introduction

These topic tests have been fully

cross-referenced to the Pearson, Hodder and

Collins textbooks for your convenience (see reference sheet on page 2). Each test has been

designed to reflect the specification fully.

Content

This pack contains 14 fundamentals level topic tests and solutions for the OCR A Pure Mathematics Year 2 A Level content.

About the fundamentals tests

These fundamentals tests focus on isolating and testing the core

skills of each topic. The questions are designed to use simple numbers and contexts **so that students can show what they can do,** and to allow them to easily identify any weaknesses.

Each test comes with fully worked solutions, containing helpful tips, hints, and technique boxes to help students who may have made a mistake or who are struggling on a particular question.

Suggested use of the A and B tests

Each test in Set A has a corresponding test in Set B that features the same styles of questions but with different numbers. This allows for a variety of **flexible** uses including:

- **Test** \rightarrow **Homework**: Students use test B as a homework to consolidate on areas of weakness identified from completing test A under test conditions in class.
- Homework → Test: Students revise as homework using test A before doing test B in class under test conditions.
- **Test** → **Classwork**: Students work through test B with teacher input to consolidate on areas of weakness identified from completing test A under test conditions in class.
- Classwork → Test: Students work through test A with teacher input, before checking their learning by completing test B under test conditions.

Timings

The recommended times for students to complete each test are given at the top of individual tests. Suggested times for our entire range of topic tests are also compiled in a table on the timings sheet for convenience (see page 3). For these fundamentals tests, the relevant times are the first two listed under each topic.

Calculator use

The effective use of a calculator is one of the objectives of the new specification and is encouraged for all the enclosed tests.

Also available from ZigZag Education

For students who have mastered the fundamentals, a complete set of **challenge** tests are available. 50% of the marks in these tests come from concepts covered in the fundamentals tests in order to reinforce learning and boost students' confidence, while the other 50% increases in difficulty and combines and extends the concepts covered.

To prepare students for the exam itself, our **expert** tests contain 25% repeated marks from the fundamentals and challenge tests, and 75% exam-style material with compound/multistep questions.

Free Updates!

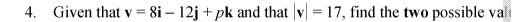
Register your email address to receive any future free updates* made to this resource or other Maths resources your school has purchased, and details of any promotions for your subject.

* resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

Go to zzed.uk/freeupdates

Cross-referencing Grid

Topic	OCR A spec. points	Subtopics
Algebraic Methods	1.01a-d, 1.02j, 1.02v	Proof hy some tion, algebraic fractions, partial
Functions and Graphs		The modulus function, functions and mappings, composite functions, inverse functions, $y = f(x) $, combining transformations, solving modulus problems
Sequences and Series	1.04e-k	Arithmetic sequences, arithmetic series, geometric sequences, geometric series, sum to infinity, sigma notation, recurrence relations, modelling with series
Binomial Expansion	1.04a-d	Expanding $(1 + x)^n$, expanding $(a + bx)^n$, using partial fractions
Radians	1.05a-g	Radian measure, arc length, areas of sectors and segments, solving trigonometric equations, small angle approximations
Trigonometry Part I	1.05h–k	Secant, cosecant and cotangent, graphs of sec x, cosec x and cot x, using sec x, cosec x and cot x, trigonometric identities, inverse trigonometric functions
Trigonometry Part II	1.02z, 1.05l–q	Addition formulae, using the angle addition formulae, double-angle formulae, solving trigonometric equations, simplifying $a\cos x \pm b\sin x$, proving trigonometric identities, modelling with trigonometric functions
Parametric Equations	1.03g-h	Parametric equations, using trigonometric identities, curve sketching, points of intersection, modelling with parametric equations
Differentiation Part I	1.07a-p, 1.07r	Differentiating $\sin x$ and $\cos x$, differentiating exponentials and logarithms, the chain rule, parametric differentiation, using second derivatives
Differentiation Part II	1.07k, 1.07q, 10.7s–t	The product rule, the quotient rule, differentiating trigonometric functions, implicit differentiation, rates of change
Numerical Methods	1.09a-e, 1.09g	Locating roots, iteration, he wton-Raphson method, applies on to modelling
Integration Part I	1.08a	integration by substitution, integration by parts, partial fractions
Integration and II	1.08e-g, 1.08k-l, 1.09f	Finding areas, the trapezium rule, solving differential equations, modelling with differential equations
Vectors	1.10a-h	3D coordinates, vectors in 3D, solving geometric problems, applications to mechanics


Timings Sheet

For the **fundamentals** tests, refer to the tests marked X.1a and X.1b. For the **challenge** tests, refer to the tests marked X.2a and X.2b. For the **expert** tests, refer to the tests marked X.3a and X.3b.

Topic test reference	Recommended time (minutes)	Topic test reference	Recommended time (minutes)	
Algebraic I	Algebraic Methods		Trigonometry Part I	
1.1.a	35	6.1a	30	
1.1b	35	6.1h	30	
1.2a	40	5	40	
1.2b	40	6.2b	40	
1.3a	4 7	6.3a	50	
1.7	40	6.3b	50	
Fu and Graphs		Trigonometry Part II		
2.1a	20	7.1a	55	
2.1b	20	7.1b	55	
2.2a	35	7.2a	65	
2.2b	35	7.2b	65	
2.3a	40	7.3a	65	
2.3b	40	7.3b	65	
Sequences a	and Series			
3.1a	30	8.1a	30	
3.1b	30	8.1b	30	
3.2a	35	8.2a	50	
3.2b	35	8.2b	50	
3.3a	50	8.3a	50	
3.3b	50	8.3b	50	
Binomial E	xpansion	Differentiation Part I		
4.1a	25	9.1a	25	
4.1b	25	9.1b	25	
4.2a	50	9.2a	30	
4.2b	50	9.2b	30	
4.3a	60	9.3a	45	
4.3b	60	9. o	45	
Radia	ans	Differentiation Part II		
5.1a		10.1a	30	
5.1	16	10.1b	30	
5.2	20	10.2a	40	
5.2b	20	10.2b	40	
5.3a	35	10.3a	45	
5.3b	35	10.3b	45	

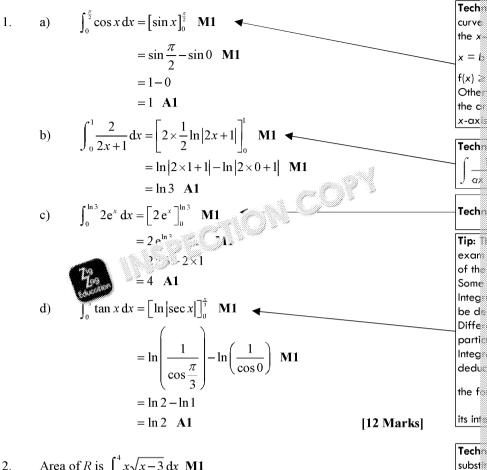
- a) (0, 0, 0) and (2, 5, 14)
- b) (1, 0, -2) and (2, 12, 10)
- c) (-1, -10, 2) and (4, 10, -2)
- Let $\mathbf{v} = 2\mathbf{i} 5\mathbf{j} + \mathbf{k}$ and $\mathbf{w} = -\mathbf{i} + 4\mathbf{j} 2\mathbf{k}$. Find the following vectors, g notation:
 - a) $\mathbf{v} + \mathbf{w}$
 - b) $\mathbf{v} \mathbf{w}$
 - c) $2\mathbf{v} 3\mathbf{w}$
- Show that the **resultant** of **a** and **b** is **p**

5. Find the **unit vector** that is in the direction of each of the following vector

a)
$$\begin{pmatrix} 2 \\ 6 \\ 3 \end{pmatrix}$$

b)
$$\begin{pmatrix} -2 \\ -11 \\ 10 \end{pmatrix}$$

$$\begin{array}{c} c) & \begin{pmatrix} 4 \\ -2 \\ -\sqrt{5} \end{pmatrix} \end{array}$$


- Find, to 1 decimal place, the angle in degrees made by the vector $\begin{bmatrix} -8 \end{bmatrix}$
 - the positive x-axis a)
 - the positive y-axis **b**)
 - the positive z-axis c)
- O is the origin, while the points P and O have coordinates (1, 0, 5) and vectors to find the coordinates of the point R such that OPOR is a par
- The points P and Q have coordinates (4, -4, -4, -4, -4, -6) respective
 - Show that $\triangle OPQ$ is an **equile**. It is agre.
 - b) Find the exact area of the large $\triangle OPQ$.
- A bod a_i is acted on by a force (12i 8j + 20k) N. Find the nswer in ijk notation.
- 10. A body is acted on by forces $(a\mathbf{i} + 2\mathbf{j} 7\mathbf{k})$ N, $(7\mathbf{i} + b\mathbf{j} + \mathbf{k})$ N and $(-9\mathbf{i})$ a, b and c. The body is in a state of equilibrium. Find the values of a

Preview of Questions Ends Here		
Preview of Questions Ends Here This is a limited inspection copy. Sample of questions ends here to avoid questions before they are set. See contents page for details of the res		
This is a limited inspection copy. Sample of questions ends here to avoid		
This is a limited inspection copy. Sample of questions ends here to avoid		

Solutions to Integration Part II - Test B

COPYRIGHT

PROTECTED

f. ci.

t. c

Let u = x - 3, so $\frac{du}{dx} = 1$

The lower limit of integration x = 3 becomes u = 3 - 3 = 0

The upper limit of integration x = 4 becomes u = 4 - 3 = 1

So
$$\int_{3}^{4} x \sqrt{x-3} \, dx = \int_{0}^{1} (u+3) \sqrt{u} \, du$$
 M1

$$= \int_{0}^{1} \left(u^{\frac{3}{2}} + 3u^{\frac{1}{2}}\right) du$$

$$= \left[\frac{2}{5}u^{\frac{5}{2}} + 2u^{\frac{3}{2}}\right]_{0}^{1}$$
 M1

$$= \left(\frac{2}{5} \times 1^{\frac{5}{2}} + 2 \times 1^{\frac{3}{2}}\right) - \left(\frac{2}{5} \times 0^{\frac{5}{2}} + 2 \times 0^{\frac{3}{2}}\right)$$
 M1

$$= \frac{12}{5} - 0$$

$$= \frac{12}{5}$$
 A1 [5 Marks]

3. a) Prove that $2\cos^2 x - \cos 2x \equiv 1$.

From the question we have $\cos 2x = \cos^2 x - \sin^2 x$

Using the identity $\sin^2 x + \cos^2 x = 1$, we can, therefore, write:

$$\cos 2x \equiv \cos^2 x - \sin^2 x$$

$$\equiv \cos^2 x - \left(1 - \cos^2 x\right) \quad \mathbf{M1}$$

$$\equiv 2\cos^2 x - 1$$

$$\therefore 2\cos^2 x - \cos 2x \equiv 1 \quad \mathbf{A1}$$

b) Area between the two curves is $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2\cos^2 x - \cos 2x) dx$ M1

From part a) this is equal to $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 dx$

And so the area is $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx = [x]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$. **M***

$$=\frac{1}{2}-\left(-\frac{\pi}{2}\right)$$

[5 Marks]

Tech

shad

unde: then s

the c

 $\int_{-\pi/2}^{\pi/2}$ which integral

Tip:

rule 🛭

shee

the le

strip. the fu

betw

Tip: trape

inclu

4. By the trapezium rule:

$$\int_0^{2\pi} e^{\sin x} dx \approx \frac{1}{2} h \{ (y_0 + y_4) + 2(y_1 + y_2 + y_3) \} \blacktriangleleft$$

where $h = \frac{b-a}{n} = \frac{2\pi - 0}{4} = \frac{\pi}{2}$ M1

and the y-values are given in the table

So
$$\int_0^{2\pi} e^{\sin x} dx \approx \frac{1}{2} \times \frac{\pi}{2} \times \{(1+1) + 2(2.718 + 1 + 0.368)\}$$
 M1
= $\frac{\pi}{4} \times 10.172$

$$=\frac{-1}{4} \times 10.172$$

= 7.98907...

$$= 7.99 (3 \text{ s.f.}) \text{ A1}$$

[3 Marks]

5. The graph of $y = 2^x$ is convex **B1**

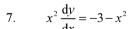
So the line forming the top of each trapezium will be above the curve, and thus it of [Allow use of sketch graph or other reasonable explanations, for example referring gradient] [2 Marks]

$$6. \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + 1$$

$$\therefore y = \int (x^2 + 1) dx$$
 M1

$$\therefore y = \frac{1}{3}x^3 + x + c \quad \mathbf{A1} \quad \blacktriangleleft$$

[...Marks]


in the questi includ some

> Tech: the vo

Tech:

the c

Tip:

$$\therefore y = \int \left(-\frac{3}{x^2} - 1 \right) dx \quad \mathbf{M1}$$

$$\therefore y = \frac{3}{x} - x + c \quad \mathbf{A1}$$

We are told that y = -3 when x = 3, so $-3 = \frac{3}{3} - 3 + c$, so c = -1 M1

So the particular solution is $y = \frac{3}{x} - x - 1$ A1

[4 Marks]

- a) $\frac{dB}{dt} = -0.25B$
 - $\therefore \frac{1}{B} \frac{\mathrm{d}B}{\mathrm{d}t} = -0.25$

Tech: the ve no 't

- $\therefore \int \frac{1}{B} dB = \int (-0.25) dt \mathbf{M1}$
- $\ln B = -0.25t + c$ A1
- $\therefore B = e^{-0.25t + c} \quad \mathbf{A1} \quad \blacktriangleleft$

Tip: usual consta

We can rewrite this as $B = e^{-0.25t} e^{c} = A e^{-0.25t}$, where $A = e^{c}$

We are told that when t = 0, B = 5000, so $5000 = Ae^{-0.25 \times 0} = A$, so A = 5000And so $B = 5000e^{-0.25t}$ **A1**

- b) When t = 12, $B = 5000e^{-0.25 \times 12} = 5000e^{-3}$ Z-2 c ... = 249 to the nearest w
- c) As t increases B tends to zero.

[Allow any acceptable csp to cong. mention of exponential decay or B always

Preview of Answers Ends Here			
This is a limited in an action			sta la akina un anguana ta
This is a limited inspection their assessm		ends here to stop studer	
	copy. Sample of answers	ends here to stop studer	
	copy. Sample of answers	ends here to stop studer	