

Topic Tests: Fundamentals Tests – Set A

For A Level Year 2 Edexcel Pure Mathematics

zigzageducation.co.uk

POD 8924

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

Contents

Thank You for Choosing ZigZag Education	ii
Teacher Feedback Opportunity	iii
Terms and Conditions of Use	iv
Teacher's Introduction	1
Cross-referencing Grid	2
Tests	
Test 1 – Algebraic Methods	
Test 2 – Functions and Graphs	
Test 3 – Sequences and Series	
Test 4 – Binomial Expansion	

Test 5 – Radians

Test 6 – Trigonometry Part I

Test 7 – Trigonometry Part II

Test 8 – Parametric Equations

Test 9 – Differentiation Part I

Test 10 – Differentiation Part II

Test 11 – Numerical Methods

Test 12 – Integration Part I

Test 13 – Integration Part II

Test 14 – Vectors

Solutions

Teacher's Introduction

Content

This pack contains 14 fundamentals level topic tests and solutions for the Edexcel Pure Mathematics Year 2 A Level content.

These topic tests have been **fully cross-referenced** to the Pearson, Hodder and Collins textbooks for your convenience (see reference sheet on page 2). Each test has been designed to reflect the specification fully.

About the fundamentals tests

These **fundamentals** tests focus on isolating and testing the core
skills of each topic. The questions are designed to use simple numbers and contexts:

skills of each topic. The questions are designed to use simple numbers and contexts **so that students can show what they can do,** and to allow them to easily identify any weaknesses.

Each test comes with fully worked solutions, containing helpful tips, hints, and technique boxes to help students who may have made a mistake or who are struggling on a particular question.

Timings

The recommended times for students to complete each test are given at the top of individual tests.

Calculator use

The effective use of a calculator is one of the objectives of the new specification and is encouraged for all the enclosed tests.

Also available from ZigZag Education

For students who have mastered the fundamentals, a complete set of **challenge** tests are available. 50% of the marks in these tests come from concepts covered in the fundamentals tests in order to reinforce learning and boost students' confidence, while the other 50% increases in difficulty and combines and extends the concepts covered.

To prepare students for the exam itself, our **expert** tests contain 25% repeated marks from the fundamentals and challenge tests, and 75% exam-style material with compound/multistep questions.

For each collection of Set A tests we also offer a corresponding collection of Set B duplicated tests with the same styles of questions but different numbers. This allows for a variety of **flexible** uses including:

- **Test** → **Homework**: Students use test B as a homework to consolidate on areas of weakness identified from completing test A under test conditions in class.
- Homework → Test: Students revise as homework using test A before doing test B in class under test conditions.
- **Test** \rightarrow **Classwork**: Students work through test B with teacher input to consolidate on areas of weakness identified from completing test A under test conditions in class.
- Classwork → Test: Students work through test A with teacher input, before checking their learning by completing test B under test conditions.

For total flexibility, the Set A and Set B tests of all three levels can be run on a rolling basis, using the fundamentals tests as starters, with a time interval between them, leaving one expert level test to use at the end of the course for topic revision.

Free Updates!

Register your email address to receive any future free updates* made to this resource or other Maths resources your school has purchased, and details of any promotions for your subject.

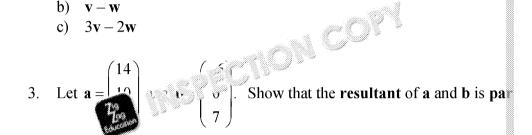
* resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

Go to zzed.uk/freeupdates

Cross-referencing Grid

Topic	Edexcel spec. points	Subtopics
Algebraic	1.1, 2.6,	Proof by file tice, algebraic fractions, partial
Methods	2.10	f and research factors, algebraic division
Functions and Graphs	_ ∠ ∠.9	modulus function, functions and mappings, composite functions, inverse functions, $y = f(x) $ and $y = f(x)$, combining transformations, solving modulus problems
Sequences and Series	4.2–4.6	Arithmetic sequences, arithmetic series, geometric sequences, geometric series, sum to infinity, sigma notation, recurrence relations, modelling with series
Binomial Expansion	4.1	Expanding $(1 + x)^n$, expanding $(a + bx)^n$, using partial fractions
Radians	5.1–5.3	Radian measure, arc length, areas of sectors and segments, solving trigonometric equations, small angle approximations
Trigonometry Part I	5.4–5.5	Secant, cosecant and cotangent, graphs of sec x, cosec x and cot x, using sec x, cosec x and cot x, trigonometric identities, inverse trigonometric functions
Trigonometry Part II	2.11, 5.6–5.9	Addition formulae, using the angle addition formulae, double-angle formulae, solving trigonometric equations, simplifying $a\cos x \pm b\sin x$, proving trigonometric identities, modelling with trigonometric functions
Parametric Equations	3.3–3.4	Parametric equations, using trigonometric identities, curve sketching, points of intersection, modelling with parametric equations
Differentiation Part I	7.1–7.5	Differentiating $\sin x$ and $\cos x$, differentiating exponentials and logarithms, the chain rule, parametric differentiation, using second derivatives
Differentiation Part II	7.2, 7.4–7.6	The product rule, the quotient rule, differentiating trigonometric functions, implicit differentiation, rates of change
Numerical Methods	9.1–9.3, 9.5	Locating roots, it are on howevon-Raphson method, Fig. 2008 of modelling
Integration Part I	2, 5 5 , 5	ாeg பத் andard functions, integrating f(ax + b), பத்த trigonometric identities, reverse chain rule, integration by substitution, integration by parts, partial fractions
Integration Part II	8.3–8.4, 8.7–8.8, 9.4	Finding areas, the trapezium rule, solving differential equations, modelling with differential equations
Vectors	10.1–10.5	3D coordinates, vectors in 3D, solving geometric problems, applications to mechanics

COPYRIGHT PROTECTED



Find the **distances** between the following pairs of points:

- a) (0, 0, 0) and (2, 6, 9)
- b) (1, 0, -1) and (3, 10, 10)
- c) (-1, -1, 2) and (5, -7, -15)

2. Let $\mathbf{v} = 4\mathbf{i} + 3\mathbf{j} - 5\mathbf{k}$ and $\mathbf{w} = -\mathbf{i} - \mathbf{j} + 2\mathbf{k}$. Find the following vectors, giv

- a) $\mathbf{v} + \mathbf{w}$
- b) $\mathbf{v} \mathbf{w}$
- c) $3\mathbf{v} 2\mathbf{w}$

- Given that $\mathbf{v} = 2\mathbf{i} + p\mathbf{j} 14\mathbf{k}$ and that $|\mathbf{v}| = 15$, find the two possible value
- Find the **unit vector** that is in the direction of each of the following ve exactly:

a)
$$\begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$

b)
$$\begin{pmatrix} -12 \\ 16 \\ 15 \end{pmatrix}$$

c)
$$\begin{pmatrix} \sqrt{2} \\ -3 \\ \sqrt{5} \end{pmatrix}$$

- Find, to **3 significant figures**, the angle in **degrees** made by the vector
 - the positive x-axis a)
 - b) the positive y-axis
 - the positive z-axis c)
- O is the origin, while the points P and O have coordinates (3, 4, 0) and vectors to find the coordinates of the point R such that OPOR is a para
- The points P and Q have coordinates (5, -2, -3) respectively.
 - a) Show that $\triangle OPQ$ is z = c $\mathbf{t} = c$ at triangle.
 - b) Find the exact A A A are triangle $\triangle OPQ$.
- ass 3 kg is acted on by a force (-6i + 6j 12k) N. Find the giving your answer in ijk notation.
- 10. A body is acted on by forces $(a\mathbf{i} + 3\mathbf{j} \mathbf{k})$ N, $(2\mathbf{i} + b\mathbf{j} + \mathbf{k})$ N and $(-5\mathbf{i} \mathbf{k})$ a, b and c. The body is in a state of equilibrium. Find the values of a

COPYRIGHT **PROTECTED**

Preview of Questions Ends Here		
Preview of Questions Ends Here This is a limited inspection copy. Sample of questions ends here to avoid questions before they are set. See contents page for details of the res		
This is a limited inspection copy. Sample of questions ends here to avoid		
This is a limited inspection copy. Sample of questions ends here to avoid		

Solutions to Integration Part II - Test A

c)
$$\int_{0}^{\ln 10} e^{x} dx = \left[e^{x} \right]_{0}^{\ln 10} M1$$

$$= e^{\ln 10} - e^{0} M1$$

$$= 10 - 1$$

d)
$$x dx = \left[\tan x\right]_0^{\frac{\pi}{3}} M1$$

$$= \tan \frac{\pi}{3} - \tan 0 M1$$

$$= \sqrt{3} - 0$$

$$= \sqrt{3} A1$$
 [12 Marks]

2. Area of
$$R$$
 is $\int_0^3 \frac{x}{\sqrt{x+1}} dx$ M1

Let $u = x + 1$, so $\frac{du}{dx} = 1$

The lower limit of integration $x = 0$ becomes $u = 0 + 1 = 1$

The upper limit of integration $x = 3$ becomes $u = 3 + 1 = 4$

So
$$\int_{0}^{3} \frac{x}{\sqrt{x+1}} dx = \int_{1}^{4} \frac{u-1}{\sqrt{u}} du \quad \mathbf{M1}$$

$$= \int_{1}^{4} \left(u^{\frac{1}{2}} - u^{-\frac{1}{2}} \right) du$$

$$= \left[\frac{2}{3} u^{\frac{3}{2}} - 2u^{\frac{1}{2}} \right]_{1}^{4} \quad \mathbf{M1}$$

$$= \left(\frac{2}{3} \times 4^{\frac{3}{2}} - 2 \times 4^{\frac{1}{2}} \right) - \left(\frac{2}{3} \times 1^{\frac{3}{2}} - 2 \times 1^{\frac{1}{2}} \right) \quad \mathbf{M1}$$

$$= \frac{4}{3} - \left(-\frac{4}{3} \right)$$

$$= \frac{8}{3} \quad \mathbf{A1}$$
 [5 Marks]

3. a) Prove the
$$x = 1$$
.
$$(x = 1)$$

$$(x = 1)$$

$$(x = 1)$$

ded $\cos x \neq 0$ we can divide through by $\cos^2 x$ to get:

$$\frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\cos^2 x} \equiv \frac{1}{\cos^2 x} \quad \mathbf{M1}$$

$$\therefore \tan^2 x + 1 \equiv \sec^2 x$$

$$\therefore \sec^2 x - \tan^2 x \equiv 1 \quad \mathbf{A1}$$

COPYRIGHT PROTECTED

Area between the two curves is $\int_0^1 (\sec^2 x - \tan^2 x) dx$ M1 b) From part a) this is equal to $\int_{a}^{1} 1 dx$ And so the area is $\int_0^1 1 dx = [x]_0^1$ M1 =1 A1 [5 Marks]

By the trapezium rule, 4.

$$\int_0^{\pi} \cos(\sin x) \, \mathrm{d}x \approx \frac{1}{2} h \left\{ \left(y_0 + y_4 \right) + 2 \left(y_1 + y_2 + y_3 \right) \right\}$$

where
$$h = \frac{b-a}{n} = \frac{\pi - 0}{4} = \frac{\pi}{4}$$
 M1

and the y values are given in the table

So
$$\int_0^{\pi} \cos(\sin x) dx \approx \frac{1}{4} \frac{\pi}{1 + 2} \left(0.760 + 0.540 + 0.760\right)$$
 M1

$$= \frac{\pi}{8} \times 6.12$$
= 2.40331...
= 2.40 (3 s.f.) **A1**

[3 Marks]

s

t iii

s

t

S: t

T. io

ing

S T.

t

T.

Ł.

- 5. The graph of $y = \sin x$ is concave **B1** So the line forming the top of each trapezium will be beneath the curve, and thus it [Allow use of sketch graph or other reasonable explanations; for example, referring to [2 Marks]
- $\frac{\mathrm{d}y}{\mathrm{d}x} = x^2$ 6. $\therefore y = \int x^2 \, \mathrm{d}x \, \mathbf{M1}$

$$\therefore y = \frac{1}{3}x^3 + c \quad \mathbf{A1}$$

[2 Marks]

 $x^3 \frac{\mathrm{d}y}{\mathrm{d}x} = 2x^4 + x$ 7.

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x^4 + x}{x^3} = 2x + \frac{1}{x^2} \quad \mathbf{M1}$$

$$\therefore y = \int 2x + x^{-2} \, \mathrm{d}x$$

$$y = x^2 - x^{-1} + c$$
 A1

We are told that y = 1 when x = 1, so $1 = 1^2 - 1^{-1} + c = c$ = 1 M1 So the particular solution is $y = x^2 - x^{-1} + 1$ or $y = x^2 - x + 1$ A1 [4 Marks]

COPYRIGHT **PROTECTED**

8. a)
$$\frac{dP}{dt} = 0.1P$$

$$\therefore \frac{1}{P} \frac{dP}{dt} = 0.1$$

$$\therefore \int \frac{1}{P} dP = \int 0.1 dt \quad \mathbf{M1}$$

$$\therefore \ln P = 0.1t + c \quad \mathbf{A1}$$

We can rewrite this as $P = e^{0.1t} e^{c} = A e^{0.1t}$, where $A = e^{c}$

We are told that when t = 0, P = 150, so $150 = Ae^{0.1 \times 0} = A$, so A = 150 M1 And so $P = 150e^{0.1t}$ **A1**

- **b**)
- And so $P = 150e^{0.1t}$ A1 When t = 25, $P = 150e^{0.1 \times 25} = 150e^{2.5} = 1^{\circ}$ Z7. 7 1800 to the nearest hum. No, exponential growth eventure on a larger than realistically possible. [Can also reference the previous agure when t = 250 of $P \approx 10^{13}$ penguins as c)

 $\therefore P = e^{0.1t+c} \quad \mathbf{A1}$

t!

U.

c

COPYRIGHT **PROTECTED**

Preview of Answers Ends Here				
This is a limited in an action			sta la akina un anguana ta	
This is a limited inspection their assessm		ends here to stop studer		
	copy. Sample of answers	ends here to stop studer		
	copy. Sample of answers	ends here to stop studer		