

zigzageducation.co.uk

POD 8658

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

Contents

Thank You for Choosing ZigZag Education	. i i
Teacher Feedback Opportunity	iii
Terms and Conditions of Use	iv
Teacher's Introduction	1
Cross-referencing Grid	2
Timings Sheet	3

Tests

- Test 1.3b Algebraic Expressions
- Test 2.3b Quadratics
- Test 3.3b Simultaneous Equations and Inequalities
- Test 4.3b Graphs and Transformations
- Test 5.3b Straight Line Graphs
- Test 6.3b Circles
- Test 7.3b Algebraic Methods
- Test 8.3b Binomial Expansion
- Test 9.3b Trigonometric Ratios
- Test 10.3b Trigonometric Identities and Equations
- Test 11.3b Vectors
- Test 12.3b Differentiation
- Test 13.3b Integration
- Test 14.3b Exponentials and Logarithms

Solutions

Teacher's Introduction

Content

This pack contains 14 expert level topic tests, which together form 'Set B' in a paired range of tests for the Edexcel Pure Mathematics AS / Year 1 A Level content.

Each test comes with fully worked solutions, containing helpful tips, hints and technique boxes for students struggling on a particular question.

These topic tests have been **fully cross-referenced** to the Pearson, Hodder and Collins textbooks for your convenience (see reference sheet on page 2). Each test has been designed to reflect the specification fully.

About the expert tests

These **expert** tests have been designed to **prepare your students** for success in their exam. 25% of the marks come from questions similar in style to our fundamentals and challenge tests, giving all of your students a chance to show what they can do. The other 75% of the marks come from examination-style material, including compound and multistep questions that bring all parts of the topic together.

Suggested use of the A and B tests

Each test in Set A has a corresponding test in Set B that features the same styles of questions but with different numbers. This allows for a variety of **flexible** uses including:

- **Test** \rightarrow **Homework**: Students use test B as a homework to consolidate on areas of weakness identified from completing test A under test conditions in class.
- Homework → Test: Students revise as homework using test A before doing test B in class under test conditions.
- **Test** → **Classwork**: Students work through test B with teacher input to consolidate on areas of weakness identified from completing test A under test conditions in class.
- Classwork → Test: Students work through test A with teacher input, before checking their learning by completing test B under test conditions.

Timings

The recommended times for students to complete each test are given at the top of individual tests. Suggested times for our entire range of topic tests are also compiled in a table on the timings sheet for convenience (see page 3). For these expert tests, the relevant times are the fifth and sixth times listed under each topic.

Calculator use

Although students are allowed to use a calculator in their examinations, the first topic (Algebraic Expressions) should be done without a calculator, as indicated by the non-calculator symbol () at the top of the tests. This encourages students to develop their non-calculator skills, saving time in their examinations on basic algebra and arithmetic.

Also available from ZigZag Education

The perfect starting point for students of all abilities are our **fundamentals** tests. These isolate and test the core skills in each topic so that your students can show what they can do. They get a confidence boost and you can see at a glance where each student's weaknesses lie.

For students who are ready to go beyond the fundamentals, a complete set of **challenge** tests are available. 50% of the marks in these tests come from concepts covered in the fundamentals tests in order to reinforce learning and boost students' confidence, while the other 50% increases in difficulty and progresses the concepts covered.

Free Updates!

Register your email address to receive any future free updates* made to this resource or other Maths resources your school has purchased, and details of any promotions for your subject.

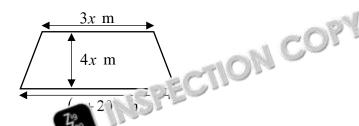
* resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

Go to zzed.uk/freeupdates

Cross-referencing Grid

				Chap	ter Refe	rence	
Topic	Edexcel spec. points	Subtopics	Edexcel Pearson textbook [ISBN: 9781292183398]	Edexcel Hodder textbook [ISBN: 9781471853043]	Edexcel Collins textbook [ISBN: 9780008204952]	AQA Hodder textbook [ISBN: 9781471852862]	OCR A Hodder textbook [ISBN: 9781471853067]
Algebraic Expressions	2.1–2.2, 2.6	Index laws, expanding brackets, factorising, negative and fractional indices, surds, rationalising denominators	1	2, 3.1, 7.1	1.1, 1.4, 1.6–1.8	2, 3.1, 7.1	2, 3.1, 7.1
Quadratics	2.3	Solving quadratic equations, completing the square, functions, quadratic graphs, discriminants, modelling	2	3, 8.1	2.1– 2.4, 3.1, 3.7– 3.8, 8.2	3, 8.1	3, 8.1
Simultaneous Equations and Inequalities	2.4–2.5	Linear simultaneous equations, quadratic simultaneous equations, simultaneous equations on graphs, linear inequalities, quadratic inequalities, inequalities on graphs, regions	3	4	2.5–2.8	4	4
Graphs and Transformations	2.7–2.8	Cubic graphs, quartic graphs, reciprocal graphs, points of intersection, translations, stretching, transformations	4	8	3	8	8
Straight Line Graphs	3.1	Equations of straight lines, parallel and perpendicular lines, length and area, modelling	5	5.1-5.3	3.6, 4	5.1-5.3	5.1–5.3
Circles	3.2	Midpoints and perpendicular bisectors, equation of a circle, intersections of straight lines and circles, use tangent and chord properties, circles and triangles	6	5.4–5.5	5	5.4–5.5	5.4–5.5
Algebraic Methods	1.1, 2.6	Algebraic fractions, dividing polynomials, the factor theorem, mathematical proof, methods of proof	7	1, 7	1.5, 11	1, 7	1, 7
Binomial Expansion	4.1	Pascal's triangle, factorial notation, binomial expansion, binomial problems, binomial estimation	8	9	1.2-1.3	9	9
Trigonometric Ratios	5.1–5.2	The cosine rule, the sine rule, areas of triangles, solving triangle problems, graphs of sine, cosine and tangent, transforming trigonometric graphs	9	6.2– 6.5, 8.4	6.1– 6.5, 3.7–3.8	6.2– 6.5, 8.4	6.2– 6.5, 8.4
Trigonometric Identities and Equations	5.3–5.4	Angles in all four quadrants, exact values of trigonometric ratios, trigonometric identities, simple trigonometric equations, harder trigonometric equations, equations and identities	10	6.1–6.2	6.1, 6.4–6.6	6.1–6.2	6.1–6.2
Vectors	9.1–9.5	Vectors, representing vectors, magnitude and direction, position vectors, solving geometric problems, modelling	11	12	10	12	12
Differentiation	7.1–7.3	Gradients of curves, finding derivatives, differentiating x ⁿ , differentiating quadratics, gradients, tangents and normals, increasing and decreasing functions, second order derivatives, stationary points, sketching, modelling	12	10	8	10	10
Integration	8.1–8.3	Integrating x ⁿ , indefinite integrals, finding functions, definite integrals, areas under curves, areas under the x-axis, areas between curves and lines	13	11	9	11	11
Exponentials and Logarithms	6.1–6.7	Exponential functions, y = e ^x , exponential modelling, logarithms, laws of logarithms, solving equations using logarithms, working with natural logarithms, logarithms and non-linear data	14	13	7	13	13

Timings Sheet


For the **fundamentals** tests, refer to the tests marked X.1a and X.1b. For the **challenge** tests, refer to the tests marked X.2a and X.2b. For the **expert** tests, refer to the tests marked X.3a and X.3b.

Topic test reference	Recommended time (minutes)	Topic test reference	Recommended time (minutes)	Topic test reference	Recommended time (minutes)	
Algebraic Ex	pressions	Cir	cles	Vec	ctors	
1.1.a	14	6.1a	15	11.1a	9	
1.1b	15	6.1b	11	11.1b	9	
1.2a	21	6.2a	11	11.2a	17	
1.2b	17	6.2b	11	11.2b	15	
1.3a	14	6.3a	11	11.3a	11	
1.3b	12	6.3b	13	11.3b	11	
Quadra	Quadratics		Algebraic Methods		ntiation	
2.1a	19	7.1a	5	12.1a	13	
2.1b	16	7.1b	5	12.1b	9	
2.2a	23	7.2a	7	12.2a	17	
2.2b	19	7.2b	5	12.2b	13	
2.3a	26	7.3a	7	12.3a	17	
2.3b	25	7.3b	7	12.3b	17	
Simultaneous and Inequ	-	Binomial Expansion		Integration		
3.1a	10	8.1a	11	13.1a	15	
3.1b	8	8.1b	9	13.1b	13	
3.2a	13	8.2a	21	13.2a	15	
3.2b	11	8.2b	17	13.2b	13	
3.3a	23	8.3a	13	13.3a	13	
3.3b	17	8.3b	13	13.3b	11	
Graphs and Trai	nsformations	Trigonom	etric Ratios	Exponentials a	and Logarithms	
4.1a	17	9.1a	11	14.1a	19	
4.1b	9	9.1b	11	14.1b	11	
4.2a	17	9.2a	19	14.2a	15	
4.2b	15	9.2b	13	14.2b	11	
4.3a	19	9.3a	23	14.3a	15	
4.3b	13	9.3b	21	14.3b	11	
Straight Lin	Straight Line Graphs		Trigonometric Identities and Equations			
5.1a	9	10.1a	17			
5.1b	7	10.1b	17			
5.2a	7	10.2a	15			
5.2b	7	10.2b	13			
5.3a	13	10.3a	19			
5.3b	11	10.3b	15			

Quadratics – Test B (25 mins)

Subtopics: Solving quadratic equations, completing the square, functions, quadratic g

- Solve $2x^2 3x 1 = 0$, leaving your answer in simplified surd form. 1.
- Given that x is **positive**, solve $\frac{1}{x} \frac{2x}{1-x} = 1$
- This trapezium has an area of 100 m². Show that the **height** of the trap $(-10+10\sqrt{3})$ m. Explain why this is the only solution.

- By connecting the square, show that the solutions to the equation x^2 formula $x = -2b \pm \sqrt{(2b)^2 - c}$
- The function f is defined as $f(x) = 4x 2x^2 3$
 - a) Write f(x) in the form $A + B(x+C)^2$, where A, B and C are real
 - b) Explain why f(x) < 0 for all values of x and find the maximum va
- Sketch the graphs of the following equations **on separate diagrams**. curve crosses the axes, label the coordinates of the turning point, and w line of symmetry:
 - $y = 25 x^2$
- b) $y = x^2 + 4x + 4$
- The graph of $y = ax^2 + bx + c$ has a **minimum** at $\left(-\frac{7}{4}, -\frac{169}{8}\right)$ and pass Find the values of a, b and c.
- Find all roots of the following functions, leaving your answers in surd f
 - a) $g(x) = 2x^3 + 8x^2 + 6x$ b) $i(x) = x 5\sqrt{x} + 6$
- $f(x) = 3x^2 + (k+6)x + k$ where k is a real constant
 - a) Find the **discriminant** of f(x) in terms of k.
 - b) Using part a), or otherwise, to that f(x) has two **distinct** real
- 10. Jack is at the to 1 ill. At time t = 0 he starts to cycle down to the the bold for minutes. He then stops cycling. Jack's height, in me hill after minutes is modelled by the function $g(t) = t^2 - 8t + c$, for so (In this question we are only considering vertical displacement; horizontal dis Find the value of c.
 - At what time was Jack 9 m above the bottom of the hill?
 - Rearrange g(t) into the form $q + (t + p)^2$ and state the values of the

NSPECTION COPY

COPYRIGHT **PROTECTED**

Preview of Questions Ends Here	
Preview of Questions Ends Here This is a limited inspection copy. Sample of questions ends here to avoid questions before they are set. See contents page for details of the res	
This is a limited inspection copy. Sample of questions ends here to avoid	
This is a limited inspection copy. Sample of questions ends here to avoid	

Solutions to Straight Line Graphs – Test B

The distance between (x_1, y_1) and (x_2, y_2) can be found using the formula $d = \sqrt{(x_1, y_1)}$ 1.

$$d = \sqrt{(4 - (-1))^2 + (7 - 3)^2} \quad \mathbf{M1}$$
$$= \sqrt{5^2 + 4^2} = \sqrt{25 + 16} = \sqrt{41} \quad \mathbf{A1}$$

[2 Marks]

The gradient of the line that joins the points (-2, -1) and (2, 7) is 2.

$$m = \frac{7 - (-1)}{2 - (-2)} = \frac{8}{4} = 2$$
 M1

The line passing through the point (-2, -1) with gradient 2 has the equation y - (-2, -1)

 $\therefore 2x - y + 3 = 0$ **A1**

6 and simplified to y = 3x - 43. 12x-4y-16=0 can be rearranged to The gradient is 3 M1

Parallel lines have ec a jr my

sin y h the origin with gradient 3 has the equation y = 3x A1 [2] The lin

1, 3), *B* be (2, 6) and *C* be (4, 8). 4.

Points are collinear if gradients of lines AB and BC are equal.

The line joining (x_1, y_1) and (x_2, y_2) has gradient $m = \frac{y_2 - y_1}{x_2 - x_1}$

Altern equati points on it

For line AB: $m = \frac{6-3}{2-(-1)} = \frac{3}{3} = 1$ M1

For line *BC*: $m = \frac{8-6}{4-2} = \frac{2}{2} = 1$ **M1**

Same gradient and common point so the three points lie on the same straight line and are, therefore, collinear. A1 [3 Marks]

5. Find equation of line that passes through point (0,3) and has gradient -3

Can see m = -3, c = 3

Substitute into y = mx + c

$$y = -3x + 3$$
 M1

Substitute y = -3x + 3 into 3x - 3y + 6 = 0

3x-3(-3x+3)+6=3x+9x-9+6=12x-3=0 M1

$$\therefore x = \frac{3}{12} = \frac{1}{4}$$
 M1

Tec

Substitute $x = \frac{1}{4}$ into y = -3x + 3

$$y = -3\left(\frac{1}{4}\right) + 3 = -\frac{3}{4} + 3 = \frac{9}{4}$$
 M1

Intersects at point $\left(\frac{1}{4}, \frac{9}{4}\right)$ **A1**

Substitute y = 2x + 4 in -3y6.

$$3x - 3(2 - 4)$$

$$3x-3(2-4)$$
 $3x-5x-12-9=-3x-21=0$ M1

Substitute x = -7 into y = 2x + 4

$$y = 2(-7) + 4 = -10$$
 M1

 \therefore X is the point (-7,-10)

Line that passes through *X* and *Y* has gradient $m = \frac{-2 - (-10)}{1 - (-7)} = \frac{8}{8} = 1$ **M1**

The equation of the line with gradient 1, passing through point X (and Y) is y-(-10)=1(x-(-7))

$$\therefore x - y - 3 = 0$$
 A1

[5 Marks]

NSPECTION COPY

COPYRIGHT **PROTECTED**

7. The gradient of the line y = 2x - 3 is 2 M1

The gradient of the line perpendicular to it is $-\frac{1}{2}$ M1

The line that passes through the point (2,-3) with gradient $-\frac{1}{2}$ can be found using

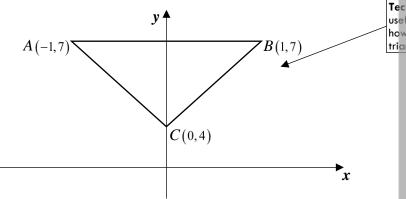
$$y - y_1 = m(x - x_1)$$

$$y-(-3)=-\frac{1}{2}(x-2)$$
 M1

$$\therefore 2y + 6 = -x + 2$$

$$\therefore x + 2y + 4 = 0$$
 A1

[4 Marks]


The distance between (x_1, y_1) and (x_2, y_2) can be from sing the formula $d = \sqrt{(x_1, y_1)^2}$ 8.

The distance between *B* and *C*: $a_1 = \sqrt{(0-1)^2 + (4-7)^2} = \sqrt{(-1)^2 + (-3)^2}$ The distance 1. 1. A C: $d_{AC} = \sqrt{(0-(-1))^2 + (4-7)^2} = \sqrt{1^2 + (-3)^2}$

stance between A and B: $d_{AB} = \sqrt{(1-(-1))^2 + (7-7)^2} = \sqrt{2^2 + 0} = 2$

 $= d_{AC} \neq d_{AB}$ so triangle is isosceles **A1**

b)

The base of the triangle has length 2 The height of the triangle is 3 M1

Area of triangle = $\frac{1}{2} \times \text{base} \times \text{height}$

Area of triangle = $\frac{1}{2} \times 2 \times 3 = 3$ units² A1

[6 Marks]

Tec as c

We gra

9.

$$a = \frac{2100 - 1200}{14 - 4} = 90$$
 M1

Substitute (4,1200) into C = 90D + bN COP

$$1200 = 90(4) + b$$

$$C = 90D + 840$$
 A1

- a is the daily α in row by the designer. A1 b)
 - e harged by the designer. **A1**

[6 Marks]

NSPECTION COPY

COPYRIGHT **PROTECTED**

Preview of Answers Ends Here				
This is a limited in an action			sta la akina un anguana ta	
This is a limited inspection their assessm		ends here to stop studer		
	copy. Sample of answers	ends here to stop studer		
	copy. Sample of answers	ends here to stop studer		