

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

Contents

Thank You for Choosing ZigZag Education	ii
Teacher Feedback Opportunity	iii
Terms and Conditions of Use	iv
Teacher's Introduction	1
Cross-referencing Grid	2
Tests	
Test 1.2a – Algebraic Expressions	
Test 2.2a – Quadratics	
Test 3.2a – Simultaneous Equations and Inequalities	
Test 4.2a – Graphs and Transformations	
Test 5.2a – Straight Line Graphs	

Test 6.2a - Circles

Test 7.2a – Algebraic Methods

Test 8.2a – Binomial Expansion

Test 9.2a – Trigonometric Ratios

Test 10.2a – Trigonometric Identities and Equations

Test 11.2a – Vectors

Test 12.2a – Differentiation

Test 13.2a – Integration

Test 14.2a – Exponentials and Logarithms

Solutions

Teacher's Introduction

Content

This pack contains 14 challenge level topic tests for the OCR A Pure Mathematics AS / Year 1 A Level content.

The tests come with fully worked solutions, containing helpful tips, hints and technique boxes for students struggling on a particular question. Answers should be given to three significant figures unless specified in the question.

These topic tests have been **fully cross-referenced** to the Pearson, Hodder and Collins textbooks for your convenience (see reference sheet on page 2). Each test has been designed to reflect the specification fully.

About the challenge tests

These **challenge** tests have been designed to **stretch and challenge** your students. 50% of the marks come from questions similar in style to our fundamentals tests. These questions isolate and test the core skills in each topic. The other 50% of the marks come from questions of increased difficulty that progress and start to combine the concepts in the topic.

Timings

The recommended times for students to complete each test are given at the top of individual tests.

Calculator use

Although students are allowed to use a calculator in their examinations, the first topic (Algebraic Expressions) should be done without a calculator, as indicated by the non-calculator symbol () at the top of the test. This encourages students to develop their non-calculator skills, saving time in their examinations on basic algebra and arithmetic.

Also available from ZigZag Education

The perfect starting point for students of all abilities are our **fundamentals** tests. These isolate and test the core skills in each topic so that your students can show what they can do. They get a confidence boost and you can see at a glance where each student's weaknesses lie.

To prepare students for the exam itself, our **expert** tests contain 25% repeated marks from the fundamentals and challenge tests, and 75% exam-style material with compound/multistep questions.

For each collection of Set A tests we also offer a corresponding collection of Set B duplicated tests with the same styles of questions but different numbers. This allows for a variety of **flexible** uses including:

- Test → Homework: Students use test B as a homework to consolidate on areas of weakness identified from completing test A under test conditions in class.
- Homework → Test: Students revise as homework using test A before doing test B in class under test conditions.
- **Test** → **Classwork**: Students work through test B with teacher input to consolidate on areas of weakness identified from completing test A under test conditions in class.
- Classwork → Test: Students work through test A with teacher input, before checking their learning by completing test B under test conditions.

For total flexibility, the Set A and Set B tests of all three levels can be run on a rolling basis, using the fundamentals tests as starters, with a time interval between them, leaving one expert level test to use at the end of the course for topic revision.

Free Updates!

Register your email address to receive any future free updates* made to this resource or other Maths resources your school has purchased, and details of any promotions for your subject.

* resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

Go to zzed.uk/freeupdates

Cross-referencing Grid

				Chap	ter Refe	rence	
Topic	OCR A spec. points	Subtopics	Edexcel Pearson textbook [ISBN: 9781292183398]	Edexcel Hodder textbook [ISBN: 9781471853043]	Edexcel Collins textbook [ISBN: 9780008204952]	AQA Hodder textbook [ISBN: 9781471852862]	OCR A Hodder textbook [ISBN: 9781471853067]
Algebraic Expressions	1.02a–b, 1.02j	Index laws, expanding brackets, factorising, negative and fractional indices, surds, rationalising denominators	1	2, 3.1, 7.1	1.1, 1.4, 1.6–1.8	2, 3.1, 7.1	2, 3.1, 7.1
Quadratics	1.02f	Solving quadratic equations, completing the square, functions, quadratic graphs, discriminants, modelling	2	3, 8.1	2.1– 2.4, 3.1, 3.7– 3.8, 8.2	3, 8.1	3, 8.1
Simultaneous Equations and Inequalities	1.02c, 1.02g	Linear simultaneous equations, quadratic simultaneous equations, simultaneous equations on graphs, linear inequalities, quadratic inequalities, inequalities on graphs, regions	3	4	2.5–2.8	4	4
Graphs and Transformations	1.02m–r, 1.02w	Cubic graphs, quartic graphs, reciprocal graphs, points of intersection, translations, stretching, transformations	4	8	3	8	8
Straight Line Graphs	1.03a-c	Equations of straight lines, parallel and perpendicular lines, length and area, modelling	5	5.1–5.3	3.6, 4	5.1–5.3	5.1–5.3
Circles	1.03d-f	Midpoints and perpendicular bisectors, equation of a circle, intersections of straight lines and circles, use tangent and chord properties, circles and triangles	6	5.4–5.5	5	5.4–5.5	5.4–5.5
Algebraic Methods	1.01a-c, 1.02j	Algebraic fractions, dividing polynomials, the factor theorem, mathematical proof, methods of proof	7	1, 7	1.5, 11	1, 7	1, 7
Binomial Expansion	1.04a-b	Pascal's triangle, factorial notation, binomial expansion, binomial problems, binomial estimation	8	9	1.2-1.3	9	9
Trigonometric Ratios	1.05a-c	The cosine rule, the sine rule, areas of triangles, solving triangle problems, graphs of sine, cosine and tangent, transforming trigonometric graphs	9	6.2– 6.5, 8.4	6.1– 6.5, 3.7–3.8	6.2- 6.5, 8.4	6.2- 6.5, 8.4
Trigonometric Identities and Equations	1.05f	Angles in all four quadrants, exact values of trigonometric ratios, trigonometric identities, simple trigonometric equations, harder trigonometric equations, equations and identities	10	6.1-6.2	6.1, 6.4–6.6	6.1–6.2	6.1–6.2
Vectors	1.10a, 1.10c-g	Vectors, representing vectors, magnitude and direction, position vectors, solving geometric problems, modelling	11	12	10	12	12
Differentiation	1.07a-d, 1.07g, 1.07i, 1.07m-n, 1.07o	Gradients of curves, finding derivatives, differentiating x ⁿ , differentiating quadratics, gradients, tangents and normals, increasing and decreasing functions, second order derivatives, stationary points, sketching, modelling	12	10	8	10	10
Integration	1.08a-b, 1.08d-e	Integrating x ⁿ , indefinite integrals, finding functions, definite integrals, areas under curves, areas under the x-axis, areas between curves and lines	13	11	9	11	11
Exponentials and Logarithms	1.06a–i	Exponential functions, y = e ^x , exponential modelling, logarithms, laws of logarithms, solving equations using logarithms, working with natural logarithms, logarithms and non-linear data	14	13	7	13	13

Trigonometric Identities and Equations – Test A (15 m)

Subtopics: Angles in all four quadrants, exact values of trigonometric ratios, trigonome equations, harder trigonometric equations, equations and id-For this test you should give your answers to three significant figures

Without using a calculator, write down the exact values of:

sin 45°

- cos 210°
- Simplify $\tan \theta \sqrt{1-\sin^2 \theta}$
- Given that $\sin \theta = -\frac{3}{5}$ and $270^{\circ} \le \theta \le 360^{\circ}$ and the exact values of continuous

Solve the following manons in the intervals specified below. Give y

- decimal e^{-5} , $-180^{\circ} \le \theta \le 180^{\circ}$
- $\tan(\theta 30^{\circ}) = \frac{5}{2}, -60^{\circ} \le \theta \le 120^{\circ}$
- $8\sin 2\theta 7\cos 2\theta = 0$, $-90^{\circ} \le \theta \le 90^{\circ}$
- $\sin^2 \theta + \cos \theta = -1$, $-360^\circ \le \theta \le 0^\circ$
- Expand and simplify $(\sin \theta + \cos \theta)(\sin \theta \cos \theta)$, leaving your answer 5.
- 6. Solve the following equations in the **intervals specified** below:
 - $3\sin(\theta 60^{\circ}) + 4\cos(\theta 60^{\circ}) = 0$, $0^{\circ} \le \theta \le 360^{\circ}$
 - $2\sin^2\theta = 3(1-\cos\theta), -180^\circ \le \theta \le 180^\circ$ b)
- a) Express $\cos(\theta + 90^{\circ}) + 6\sin\theta$ as a single trigonometric function. 7.
 - b) Hence solve $\cos(\theta + 90^{\circ}) + 6\sin\theta = 2$ in the interval $-270^{\circ} \le \theta \le 10^{\circ}$ one decimal place.
- Prove that $(3\cos\theta \sin\theta)^2 + (\cos\theta + 3\sin\theta)^2 \equiv 10$
- cos e -Show that the equation $\cos^2\theta - \cos\theta - 6$ θ solutions. 9.

COPYRIGHT **PROTECTED**

Preview of Questions Ends Here			
Preview of Questions Ends Here This is a limited inspection copy. Sample of questions ends here to avoid questions before they are set. See contents page for details of the res			
This is a limited inspection copy. Sample of questions ends here to avoid			
This is a limited inspection copy. Sample of questions ends here to avoid			

Solutions to Algebraic Expressions – Test A

1. a)
$$(11+x)(3-x) = 33-11x+3x-x^2 = 33-8x-x^2$$
 A1

b)
$$(x+5)(x^2-8x+6) = x^3-8x^2+6x+5x^2-40x+30$$
 M1
= $x^3-3x^2-34x+30$ A1

$$= x^{2} - 3x^{2} - 34x + 30$$
 A1

c)
$$(x-2)(x+3)(x-5) = (x^2+x-6)(x-5)$$
 M1
= $x^3 - 5x^2 + x^2 - 5x - 6x + 30$ M1
= $x^3 - 4x^2 - 11x + 30$ A1 [6 Mark]

Alter

inste

brac

2. a)
$$36-9x-x^2 = -(x^2+9x-36) = -(x+12)(x-3)$$
 M1
= $(x+12)(3-x)$ A1

b)
$$2y^2 - y - 21 = (2y - 7)(y + 3)$$
 A1A1

c)
$$2x^3 - 4x^2 + 2x = 2x(x^2 - 2x + 1)$$

= $2x(x-1)^2$ A1

$$=2x(x-1)^2 \quad A 1$$

[6 Marks]

3. a)
$$\frac{7}{35} \times \frac{y^{11}}{y^6} = \frac{1}{5} \times y^{11-6} = \frac{y^5}{5}$$
 A1

b)
$$5x^2 \div x^{-4} = 5x^{2-(-4)} = 5x^6$$
 A1

c)
$$(x^5)^{\frac{3}{5}} = x^{5 \times \frac{3}{5}} = x^3$$
 A1

[3 Marks]

4. a)
$$\sqrt{75} + \sqrt{27} = \sqrt{25 \times 3} + \sqrt{9 \times 3} = \sqrt{25} \times \sqrt{3} + \sqrt{9} \times \sqrt{3}$$
 M1
= $5\sqrt{3} + 3\sqrt{3} = 8\sqrt{3}$ A1

b)
$$\frac{\sqrt{60}}{\sqrt{3}} = \sqrt{\frac{60}{3}} = \sqrt{20} \quad \mathbf{M1}$$
$$= \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} \quad \mathbf{M1}$$
$$= 2\sqrt{5} \quad \mathbf{A1}$$

c)
$$\sqrt{2} \times 3\sqrt{8} = 3\sqrt{2} \times 8$$
 M1
= $3\sqrt{16} = 3 \times 4 = 12$ A1

[7 marks]

5. a)
$$\sqrt{x^4} \times \sqrt{x^7} = (x^4)^{\frac{1}{2}} \times (x^7)^{\frac{1}{2}}$$
 M1

$$= x^{\frac{4 \times \frac{1}{2}}{2}} \times x^{\frac{7 \times \frac{1}{2}}{2}} = x^2 \times x^{\frac{7}{2}}$$
 M1

$$= x^{\frac{2 + \frac{7}{2}}{2}} = x^{\frac{11}{2}}$$
 A1

b)
$$\left(\sqrt[3]{x}\right)^5 = \left(x^{\frac{1}{3}}\right)^5$$
 M1
$$\frac{\frac{1}{3} \times 5}{2} = \frac{5}{3}$$

$$= x^{\frac{1}{3} \times 5} = x^{\frac{5}{3}} \text{ A1}$$
c) $(\sqrt{x})^{\frac{3}{2}} = (x^{\frac{1}{2}})^{\frac{3}{2}} \text{ M1}$

$$= (x^{\frac{1}{3}})^{\frac{3}{2}} = (x^{\frac{1}{2}})^{\frac{3}{2}} \text{ M1}$$

$$= (x^{\frac{1}{3}})^{\frac{3}{2}} = (x^{\frac{1}{2}})^{\frac{3}{2}} \text{ M1}$$
[7 Ma]

[7 Marks]

6. a)
$$8^{\frac{1}{3}} = \sqrt[3]{8} = \sqrt[3]{2 \times 2 \times 2} = 2$$
 A1

b)
$$16^{-\frac{3}{2}} = (\sqrt{16})^{-3}$$
 M1

$$=4^{-3}=\frac{1}{4^3}=\frac{1}{64}\,\mathbf{A1}$$

[3 Marks]

COPYRIGHT **PROTECTED**

7.
$$\frac{1}{-1+2\sqrt{2}} = \frac{1}{-1+2\sqrt{2}} \times \frac{-1-2\sqrt{2}}{-1-2\sqrt{2}} = \frac{-1-2\sqrt{2}}{\left(-1+2\sqrt{2}\right)\left(-1-2\sqrt{2}\right)} \quad M1$$

$$= \frac{-1-2\sqrt{2}}{\left(-1\right)^{2} - \left(2\sqrt{2}\right)^{2}} \quad M1$$

$$= \frac{-1-2\sqrt{2}}{1-8} \quad M1$$

$$= \frac{-1-2\sqrt{2}}{1-8} = \frac{1+2\sqrt{2}}{7} \quad A1$$
[4 Marks]

8. a)
$$7y^3 \times 4y^5 \times \frac{1}{2}y^2 = \left(7 \times 4 \times \frac{1}{2}\right) \times \left(y^3 \times y^5 \times y^2\right)$$
 M1
= $14 \times y^{3+5+2} = 14y^{10}$ A1

$$2 (2) (2) (3) (2) (3) (3) (4)$$

c)
$$\sqrt{45} - \sqrt{44} - \sqrt{20} = \sqrt{9 \times 5} - \sqrt{4 \times 11} - \sqrt{4 \times 5} = \sqrt{9} \times \sqrt{5} - \sqrt{4} \times \sqrt{11} - \sqrt{4} \times \sqrt{5}$$

= $3\sqrt{5} - 2\sqrt{11} - 2\sqrt{5}$ M1
= $\sqrt{5} - 2\sqrt{11}$ A1 [8 Marks]

9.
$$x^2 - 4y^2 = x^2 - (2y)^2$$
 M1 \blacktriangleleft [2 Marks]

10. a)
$$(2+\sqrt{5})(4-\sqrt{5}) = 8-2\sqrt{5}+4\sqrt{5}-(\sqrt{5})^2$$
 M1
= $8-2\sqrt{5}+4\sqrt{5}-5=3+2\sqrt{5}$ A1

b)
$$\frac{3}{(2+\sqrt{5})(4-\sqrt{5})} = \frac{3}{3+2\sqrt{5}} = \frac{3}{3+2\sqrt{5}} \times \frac{3-2\sqrt{5}}{3-2\sqrt{5}}$$
 M1
$$= \frac{3(3-2\sqrt{5})}{3^2-(2\sqrt{5})^2}$$
 M1
$$= \frac{9-6\sqrt{5}}{9-20} = \frac{9-6\sqrt{5}}{-11}$$
 M1
$$= -\frac{9}{11} + \frac{6}{11}\sqrt{5}$$
 A1 [6 Marks]

11. a)
$$(9x^2)^{\frac{3}{2}} = 9^{\frac{3}{2}} \times (x^2)^{\frac{3}{2}} = (\sqrt{9})^3 \times x^{\frac{2\times\frac{3}{2}}{2}}$$
 M1
= $3^3 \times x^3 = 27x^3$ A1

b)
$$\sqrt{x^7} \times \sqrt{25x^4} = \left(\frac{7}{2}\right)^{\frac{1}{2}} \times 2^{\frac{1}{2}} \times \sqrt{x^4} = \left(x^7\right)^{\frac{1}{2}} \times 5 \times \left(x^4\right)^{\frac{1}{2}}$$
 M1
$$= 5 \times x^2 = 5x^{\frac{11}{2}}$$
 A1 [5 Marks]

12.
$$27^{x} = 9 : (3^{3})^{x} = 3^{2}$$
 M1 \checkmark

$$\therefore 3^{3x} = 3^{2} : 3x = 2$$
 M1
$$\therefore x = \frac{2}{3}$$
 A1 [3 Marks]

COPYRIGHT **PROTECTED**

Preview of Answers Ends Here				
This is a limited in an action			sta la akina un anguana ta	
This is a limited inspection their assessm		ends here to stop studer		
	copy. Sample of answers	ends here to stop studer		
	copy. Sample of answers	ends here to stop studer		