

Starters and Plenaries

for GCSE AQA DT 3.2 Polymers

zigzageducation.co.uk

POD 9379

Publish your own work... Write to a brief... Register at **publishmenow.co.uk**

Contents

Thank You for Choosing ZigZag Education	••
Teacher Feedback Opportunity	•••
Terms and Conditions of Use	•••
Teacher's Introduction	
Specification Cross Reference	
Activities	
Activity 1 – Functionality	
Activity 2 – Aesthetics	
Activity 3 – Environmental factors	
Activity 4 – Cost	
Activity 5 – Social, cultural and ethical factors	
Activity 6 – Forces and stresses	
Activity 7 – Materials can be enhanced	
Activity 8 – Ecological issues	- 88
Activity 9 – The Six Rs	
Activity 10 – Social issues	
Activity 11 – Sources and origins	
Activity 12 – Working and physical properties	
Activity 13 – Using and working with materials	
Activity 14 – How to: shape and form	
Activity 15 – Stock forms, types and sizes	
Activity 16 – Scales of production	
Activity 17 – The use of production aids	
Activity 18 – Tools, equipment and processes	
Activity 19 – Tolerances and quality control	
Activity 20 – Commercial processes	
Activity 21 – Surface treatments and finishes	
Activity 21 - Juliace deadlicits and illisites	•••

INSPECTION COPY

Teacher's Introduction

Remember!

Always check the exam board website for new information, including changes to the specification and sample assessment material.

This resource contains 21 starters and plenaries which concisely cover the 2017 GCSE AQA DT (8552) specification (2017 onwards) section 3.2: **polymers**. Similar resources covering other material categories for the same specification points can be found on our website. The starters in this resource offer activities which will engage the students in the lesson following a break or provide an opportunity for students to transition from a break into a lesson by recapping on previous work. The plenaries within this resource can be used to finish a lesson and, therefore, ensure that learning occurs right up to the end of the lesson. The types of activity

are varied, from written communication tasks and extracting information from text, to drawing, modelling and discussion-based activities. This is to ensure the activities appeal to students with a wide range of learning styles, keeping them interested and engaged, and enabling them to practise the wide range of skills that Design and Technology students need to demonstrate in their coursework and exams.

How to use this resource

A cross-reference table has been provided as a useful tool for lesson planning. It links each activity to the specification points it covers and identifies which activities are considered starters and which should be used as plenaries. The identification of each activity as a starter or plenary is only a suggestion and teachers might find that some of the activities are interchangeable.

Extra challenges

Extra challenges have been provided for some of the activities. These can be used as activity extensions to further challenge higher-ability students, as short plenary activities or even as homework tasks.

Free Updates!

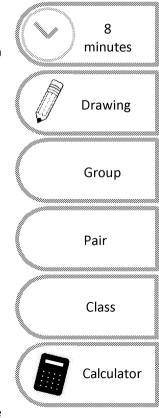
Register your email address to receive any future free updates* made to this resource or other DT resources your school has purchased, and details of any promotions for your subject.

* resulting from minor specification changes, suggestions from teachers and peer reviews, or occasional errors reported by customers

Go to zzed.uk/freeupdates

Reuse this resource

Occasionally throughout this resource you will find prompts and suggestions for different ways of using the activities and resources provided. This means that you can get more out of this pack! The suggestions can be used to create other starters and plenaries or even be incorporated into your main class activities.


Equipment

Due to the varied and creative nature of the activities in this pack, there are some activities which require equipment such as drawing materials, scissors, glue and access to the Internet. Any equipment that is needed is indicated by an 'Equipment list' in the teacher's notes. This helps keeps teachers prepared and organised.

Icons

The icons featured on each worksheet are designed to give the teacher, and the student, some key information about the activity at a glance. The icons indicate the time the students have to spend on the activity, whether it is a drawing activity and what configuration the class will be in for the activity (pair/group/class). If the activity doesn't have an icon indicating 'Pair', 'Group' or 'Class', then it is suggested that the activity be completed individually.

- Time Each of the activities in this pack is designed to take 10 minutes, including time for feedback and answers. The time that students have to complete the activity is indicated by the time icon on the right-hand side of each worksheet. For instance, the time icon given on this page as an example indicates that students should spend 8 minutes on the activity. This does not include feedback time, which would be 2 minutes in this case. Recommended feedback time is indicated in the teacher's notes for each activity.
- **Drawing** Drawing tasks have been included in order to help students develop a skill set that is relevant to Design and Technology. The drawing tasks are indicated using the drawing icon.
- Class configuration A range of activities has been created for this resource which incorporates independent, paired and grouped work and which will be engaging for the students. The varied nature of the activities provides an opportunity for a range of learning styles and levels. The tasks that have been suggested for the whole class, groups or pairs are indicated using the icons to the right.
- Calculator This icon indicates that the students should have access to a calculator for this activity.

Specification Cross Referen

This table will enable you to pick and choose starters or plenaries relevant to the teaching. While each activity has been selected as either a starter or a plenary, yo starter and plenary tasks may be interchangeable depending on how you teach this at the teacher's discretion when to use each task.

Specification reference	Activity
	Activity 1 – Functionality
	Activity 2 – Aesthetics
3.2.1 Selection of Materials and	Activity 3 – Environmental Factors
Components	Activity 4 – Cost
	Activity 5 – Social, Cultural and Ethical Fact
2 2 2 5	Activity 6 – Forces and Stresses
3.2.2 Forces and Stresses	Activity 7 – Materials Can Be Enhanced
	Activity 8 – Ecological Issues
3.2.3 Ecological and Social	Activity 9 – The Six Rs
Footprint	Activity 10 – Social Issues
3.2.4 Sources and Origins	Activity 11 – Sources and Origins
	Activity 12 – Working and Physical Properti
3.2.5 Using and Working With Materials	Activity 13 – Using and Working With Mate
iviateriais	Activity 14 – How To: Shape and Form
3.2.6 Stock Forms, Types and Sizes	Activity 15 – Stock Forms, Types and Sizes
3.2.7 Scales of Production	Activity 16 – Scales of Production
	Activity 17 – The Use of Production Aids
3.2.8 Specialist Techniques and	Activity 18 – Tools, Equipment and Process
Processes	Activity 19 – Tolerances and Quality Contro
	Activity 20 – Commercial Processes
3.2.9 Surface Treatments and Finishes	Activity 21 – Surface Treatments and Finish

NSPECTION COPY

Activity 1 - Functiona

Teacher's notes and answers

	Starter activity: functional
Aim of the activity	Students to practise matching material properties to application
Teacher's instructions	Photocopy the activity on the next page and give one copy to students 8 minutes to complete the activity. Spend 2 minutes feeding back and going through student answers.
Students' task	Students should decide what each material is commonly used appropriate column. A list of possibilities has been provided to material that doesn't have an application that it's commonly usidentify it. Extra challenge! Could be used as a starter extension, mini plens
	Suggest an application for the material that has been identified

Answers:

Thermoplastics	
Name	Comme
Polyethylene terephthalate (PETE)	Water bottle
Polyvinyl chloride (PVC)	Pipes
Polypropylene (PP)	Lunchbox with living hin
Acrylic / Poly(methyl methacrylate) (PMMA)	Point-of-sale stands

Thermosetting plastics

Name	Commo
Urea-formaldehyde (UF)	(See 'Extra challenge!' a
Polyester resin	Boat hull

Extra challenge!

Plastic with missing application: urea-formaldehyde (UF)

Commonly used for: electrical fittings

NSPECTION COPY

Functionality

Consider the tables of plastics and their properties and the list of applications that materials are commonly used for. Decide what each material is commonly used for write this in the appropriate column. But wait! There is one material that doesn's application that it's commonly used for. Which material is it?

Common uses include:

pipes, point-of-sale stands, lunchbox with living hinge, water bottle, boat hull

Thermoplastics

Name	Working properties	Physical properties
Polyethylene terephthalate (PETE)	Resistant to chemical corrosionFully recyclableTough and durableLow cost	LightweightClear (transparent)Can be easily coloured
Polyvinyl chloride (PVC)	 Hard and tough Resistant to chemical corrosion and weathering Can be flexible or ridged Low cost 	High-gloss finishColoured
Polypropylene (PP)	FlexibleToughResistant to heat, chemical corrosion and weatheringFatigue resistant	Can be translucentCan be easily colouredLightweight
Acrylic / Poly(methyl methacrylate) (PMMA)	ToughBrittle when thinEasily scratched	 Can be very clear (high optical qualities), translucent and opaque Can be easily coloured Lightweight

Thermosetting plastics

Name	Working properties	Physical properties
Urea- formaldehyde (UF)	HardBrittleHeat resistantVery good electrical insulator	Limited colours availated usually white Opaque
Polyester resin	 Brittle Tough when added to glass fibre Heat resistant Good electrical insulator 	Can be easily coloured Very clear

Extra challenge!

Suggest an application for the material you have identified as not having an appl

NSPECTION COPY

Activity 2 – Aestheti

Teacher's notes and answers

	Starter activity: aesthetic
Aim of the activity	Students to practise design sketching, annotation and community making appropriate aesthetic choices to reflect a given target
Teacher's instructions	Photocopy the activity page and give one copy to each student profiles so you have at least one profile per student (or group paper!). Cut them out, fold them up and put them into a hat/b students (or group of students) can pick a target market without Give the students 8 minutes to complete the activity. Allow 2 session for a few students to explain the features of their design
Students' task	Students should pick a target market profile. Using this target redesign the handwash bottle to appeal to the target market.

Answers:

Target market	Features of product – to appeal to
Young children (3–9)	 Bright colours Bold, simple designs Fun fonts Animals and characters
Pre-teen (10–12)	 Bright and neon colours Featuring bands or relevant TV shows Has a 'cool' factor, e.g. features pop star / firefi
Teen (13–18)	 A range of colours that go well together (could colours, but has fewer primary colours) Designs reflect current trends Bold designs that could be more complex
Young adult (19–24)	 Simplified colour palette, e.g. tones and shades an accent colour (e.g. yellow on an otherwise a scheme) Use of textures and finishes to convey theme o convey strength and toughness and gloss finish Reflects fashions and trends from social media
Adult (25+)	 Simple colour palette, more neutral Higher quality look and finish Less variety in textures and finishes, a simplifies
Older adult (65+)	A soft colour palette Shape and form reflect product

INSPECTION COPY

Teachers notes - target market profiles

Reuse this resource!

Use these target market profiles to inspire quick design activities. This helps students to practise their drawing skills and develop their ideation techniques!

Instructions:

- Photocopy this page profiles for each st groups and give a
- Cut out the profile.
- Fold up the profile hat/bowl/containe
- Let the students pi
- Use the target mar to inspire quick de design skills.

Target market: young children

Fact file:

Age: 3-9

Key information:

- Limited reading ability
- Short attention span
- Safety is important
- Might be messy
- Parents will be the person buying the products

Target market: pre-teen

Fact file:

Age: 10-12

Key information:

- Fashions and trends are important
- Safety is important
- Parents are likely to be the people buying the products, unless using pocket money

Fal

Αc

Kε

Target market: young adult

Fact file: Age: 19-24

Key information:

- Fashions and trends are key
- They have some disposable income
- Experimental with styles and brands
- Interested in new and emerging technology

Target market: adult

Fact file:

Age: 25+

Key information:

- important
- Financial obligations = less disposable income (children, housing, etc.)
- May have established brand loyalty

COPYRIGHT **PROTECTED**

CION

• Practicality becomes more

Resthetics

Choose a target market profile at random. Redesign the aesthetics of the liquid handwash bottle to appeal to the target market. Identify which features of your will make it appeal to the target market. Annotate your design.

Within the redesign consider:

- Surface finish
- Texture
- Colour

NSPECION COPY

Activity 3 – Environmental

Teacher's notes and answers

	Starter activity: environmental
Aim of the activity	Students to understand the possibilities of recycled and reuse
Teacher's instructions	Photocopy the activity on the next page and give one copy to students 8 minutes to complete the activity. Spend 2 minutes feeding back and going through student answers.
Students' task	Students should work in pairs to examine the exisitng products were in a 'past life' before they were reused or recycled.

Answers:

Picture 1: plastic bottles

Picture 2: plastic yoghurt bottle

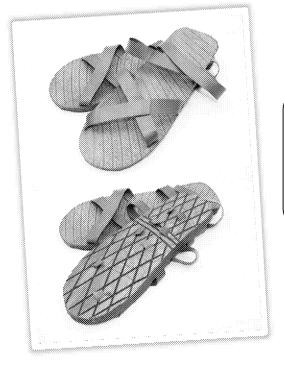
Picture 3: car tyre

Extra challenge!

Plastic bags, woven into fabric

These stools are made by Reform Studio. The fabric on these stools is woven frobags. The plastic bags that are used to make the fabric are recycled after being have been rejected by the manufacturers for being flawed. This is an example of materials from ethical sources.

INSPECTION COPY


Environmental facto

Consider the products below. Can you work out what they were before they were recycled/upcycled/reused?

Picture 1:

Picture 2:

Picture 3:

Extra challenge!

This product is a little challenging. Need a hint? These products are made by Reform Studio. Check them out at zzed.uk/9379-rstudio

COPYRIGHT PROTECTED

NSPECTION

Zig Zag Education

Activity 4 – Cost

Teacher's notes and answers

	Starter activity: cost
Aim of the activity	Students to learn how to take cost into consideration when calidea of bulk-buy discount is introduced.
Teacher's instructions	Photocopy the activity on the next page and give one copy to students 8 minutes to complete the activity. Spend 2 minutes feeding back and going through student answers. Provide calculates
Students' task	Students should work in pairs to fill in the gaps in the table be a calculator if needed.

Answers:

Product retail price	- (Mould cost +	Material for = product	Produc
1 product sells for £2.20	1 mould = £10,000.00	Enough material for 1 product = £1.00	1 proc £10,0
100 products sell for £ 220.00		Enough material for 100 products = £100.00	100 pro £ 10, 2
10,000 products sell for £22,000.00		Enough material for 10,000 products = £ 10,000.00	10,000 = £ <u>20,</u> (
10,000 products sell for £22,000.00		Bulk-buy discount of 10%!	10,000 p = £19,0
		Enough material for 10,000 products = £9,000.00	

INSPECTION COPY

Cost

Fill in the gaps in the table below. You can use a calculator if you need to!

	Product cost			
Product retail price	(Mould cost +	Material for product	= Product c	
1 product sells for £2.20		Enough material for 1 product = £1.00	1 product = £1	
100 products sell for £		Enough material for 100 products = £100.00	100 products =	
10,000 products sell for £22,000.00	1 mould = £10,000.00	Enough material for 10,000 products =	10,000 prod £	
10,000 products sell for £22,000.00	·	Bulk-buy discount of 10%! Enough material for 10,000 products = £9,000.00	10,000 proc £	

COPYRIGHT PROTECTED

Zig

Education

Activity 5 – Social, cultural and e

Teacher's notes and answers

Starl	er activity: social, cultural and e
Aim of the activity	Students to learn how social, cultural and ethical factors affect
Teacher's instructions	Photocopy the activity on the next page and give one copy to minutes to complete the activity. Spend 2 minutes at the end going through student answers.
Students' task	Students should read the mini case studies and decide wheth social responsibility, cultural influences or ethical sources.

Answers:

What factors of	does thi	s produc	t
☑ Social		☐ Cult	u

What factors	does	this	pr	oduct
☐ Social				Cultu

What factors does to	his product
☐ Social	☑ Cultu

INSPECTION COPY

Social, cultural and ethical

Read the mini case studies below and decide whether they fall into the category responsibility, cultural influences or ethical sources.

Case study 1:

Azahara bought a make-up case made from fair trade materials. This meant that knew that fair wages had been paid to the farmers growing the crops used to make-up case is made of.

What factors does this product

☐ Social ☐ ⑥

Case study 2:

Azahara has decided to go vegan (eliminating products that are made by/of animal looking into replacing products made from leather with alternatives that are not she still wants the products to be durable and affordable. She has recently bought polyurethane instead of leather.

What factors does this product ☐ Social ☐ ☐

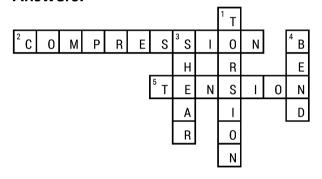
Case study 3:

Azahara has travelled to Japan. She was shocked at the amount of plastic packaging food packaging. She found it to be quite wasteful. Hygiene and cleanliness are parappeal to customers, Japanese companies often use individual wrappings and loss

What factors does this product ☐ Social ☐ ☐

NSPECTION COPY

COPYRIGHT PROTECTED

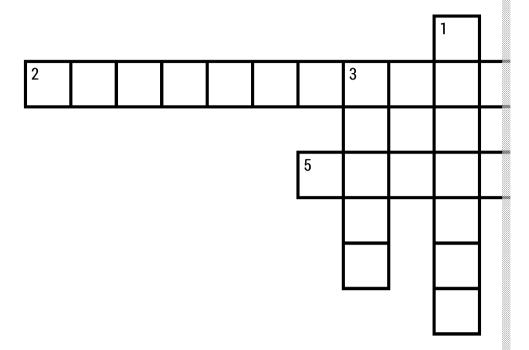

Zig Zag Education

Activity 6 – Forces and st

Teacher's notes and answers

	Plenary activity: forces and st
Aim of the activity	Students to solidify knowledge of types of forces and stresses
Teacher's instructions	Photocopy the activity on the next page and give one copy to 8 minutes to complete the activity. Spend 2 minutes at the end and going through student answers.
Students' task	Students should complete the crossword puzzle.

Answers:



INSPECTION COPY

Forces and stresse

Complete the crossword below. Solve the clues to identify the words and write the crossword.

Across

- 2 When force is applied in opposite directions, to opposite ends, to push either end
- 5 When force is applied in opposite directions to pull either end away from each of

Down

- 1 When force is being applied through twisting. (7)
- **3** When force is being applied in opposite directions, on different planes. The objection may eventually break. (5)
- 4 When force is applied and creates or increases an angle or curve. (4)

INSPECTION COPY

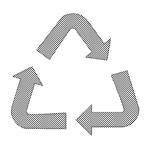
Activity 7 – Materials can be

Teacher's notes and answers

P	lenary activity: materials can be
Aim of the activity	Students to demonstrate their knowledge of how materials can be used as a recap or to identify students' existing knowledge
Teacher's instructions	Photocopy the activity on the next page and give one copy to statements on the board. Engage the class in a discussion to id are true or false, and why students think that. If the students have an activity page each they can cut out the hold up the relevant board to display their answer. This will he individual students' answers. You can ask students with an income their answer is right, then explain the correct answer.
Students' task	Students should discuss as a class whether the statements are to explain the reasons behind their answers.

Answers:

St
atement


Reinforcing a material makes it weaker.

You can reinforce a material by adding layers of the same material, or another material.

Stiffening a material always makes it stronger.

Making a material more flexible can make it stronger.

You can make plastics more flexible by adding plasticisers during the production process.

Reuse this resource!

Think about laminating the 'True' and 'False' cards and reusing them for more true/false tasks.

NSPECHON COPY

COPYRIGHT PROTECTED

Zig Zag Education

Materials can be enha

Are the statements below true or false? You decide! Tick to indicate whether you the statement is true or false. Then, hold up the 'True' or 'False' card to share you answer with the class. Be prepared to explain the reason for your answer.

Statement	True	
Reinforcing a material makes it weaker.		
You can reinforce a material by adding layers of the same material, or another material.		
Stiffening a material always makes it stronger.		
Making a material more flexible can make it stronger.		
You can make plastics more flexible by adding plasticisers during the production process.		

True Fa

INSPECTION COPY

Activity 8 – Ecological is

Teacher's notes and answers

	Plenary activity: ecological is
Aim of the activity	Students to demonstate their knowledge of when and how capproduct life cycle.
Teacher's instructions	Photocopy the activity on the next page and give one copy to students 5 minutes to complete the activity. Spend 5 minutes feeding back and going through student answers.
Students' task	Students should work in pairs to cut out the carbon footprints product life cycle to demonstrate when carbon is produced. To why they think carbon is produced, how it's produced and a war carbon could be reduced. Extra challenge! Discuss the effect on a product's carbon footprint when it is manufactured internationally.

Answers:

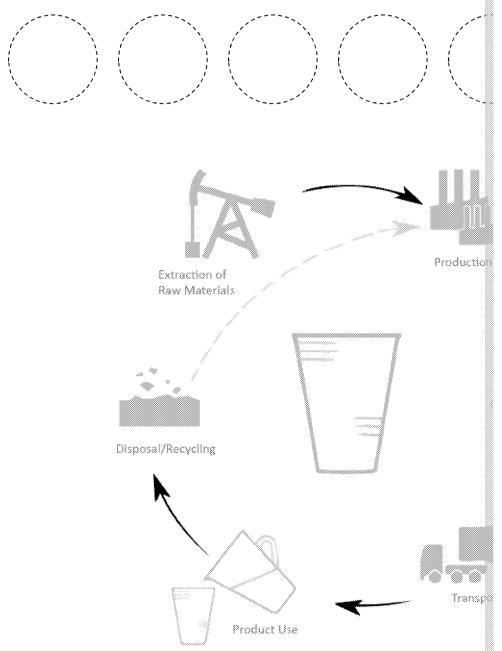
Allow any valid answers.

Example answers:

- Carbon is produced when sourcing materials because the processes used to raw materials are energy intensive and require the burning of fuel, which atmosphere. Carbon emissions could be reduced by aiming to make the prousing less energy will cause less carbon to be produced.
- The production of plastic stock forms is energy intensive. Producing energy require the burning of fuel, which releases carbon into the atmosphere. Carreduced by aiming to make the process as efficient as possible using less to be produced. Reducing wastage could also help to reduce carbon emission materials will have to be used.
- The manufacturing of plastic products is energy intensive. Producing energy to the burning of fuel, which releases carbon into the atmosphere. Making the prowastage are valid ways of reducing carbon emissions from manufacturing. How designed to use the least possible amount of material; this will help to reduce by the product (its carbon footprint).
- The nature of a plastic cup is to be disposable. It has planned obsolescence doesn't directly produce carbon, designing the product to have a longer use and prevent more products from having to be made to replace it (making arearbon).
- Disposal and recycling of the product can cause carbon emissions. Firstly, to
 disposal or recycling will produce carbon by using fuel. Then, if the produce
 carbon. The process of recycling the plastic is also energy intensive and will
 not as energy intensive as sourcing and producing a product from the raw

Extra challenge!

The carbon footprint is bigger because more fuel is used to transport the product some countries that manufacture products cheaply do not have to follow the same manufacturers in the UK, so there is less time and money spent trying to make an environmentally friendly. This can lead to larger carbon footprints.


INSPECTION COPY

Ecological issues

In pairs, consider the product life cycle of a plastic cup (shown below). Cut out the footprints and place them on the life cycle at stages where you think carbon is proved

Be ready to explain why you think carbon is produced, how it's produced and a wathe production of carbon could be reduced at each stage that you have identified example has been completed for you.

Extra challenge!

Discuss the following question: How is the carbon footprint of a product affected if the product is manufactured in a country different from the location of the final consumer (e.g. made in China, used in the UK)? Carbon is produced aproduct(s) through vehicles. It is expelled as petrol and dieseld when extracting the produced by transporteducing the produced has to travel between manufacturer, retains

NSPECIION COPY

Activity 9 – The Six F

Teacher's notes and answers

	Starter activity: the Six F
Aim of the activity	Students to learn the definitions of the Six Rs and be able to id
Teacher's instructions	Split the class into groups of three. Photocopy the activity sheet next two pages and give one activity sheet to each group of state students decide who will be the judge for their group (or nome student who will be the judge the answer page, with instruction Give the students 10 minutes to complete the activity. Exisiting or the paper counters (found on the answer page) can be cut.
Students' task	In groups of three, students should play noughts and crosses. The Six Rs is the answer to the clue / being defined to be able to place the students is a judge who will let the players know whether the answer. The first player to get a row of three wins.

Answers:

Repair	Repair	Reuse
Reduce	Recycle	Rethink
Refuse	Recycle	Reduce

A differ®

The class could play noughts at the teacher be

This game could cut out the quarter the corresponding the corresponding that the corresponding themselves answer, claims themselves given is incorresponding to the corresponding the corresponding the corresponding to th

INSPECTION COPY

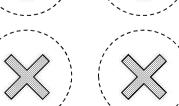
The Six Rs

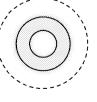
In groups of three, play noughts and crosses! One person is 'noughts' and the other crosses'; the third person is the judge. The players take turns to place the countenthe grid. The first person to get a row of three wins (remember your row can also diagonal). But wait! There's a twist! In order to put down your nought or cross, you decide which of the Six Rs matches the definition or clue. If you get it right, you counter and claim the square; if you get it wrong, the other player get claim the space. The judge will have the answers and will tell you whether you have correct answer!

When something breaks, you can To Fix something that is broken or try to _____ it instead of worn. throwing it away and buying a new one. To process the raw materials of an To use less of something is to item and use it again in a different _____ your consumption. way. If a raw material comes from a finite source it is especially Say no to excess consumption. important to it so that the materials it is made of can be used again.

NSPECTION COPY

INSPECTION COP


COPYRIGHT PROTECTED



WARNING! Answers below. For judge's eyes only!		
Repair	Repair	
Reduce	Recycle	
Refuse	Recycle	

Counters:

Activity 10 – Social iss

Teacher's notes and answers

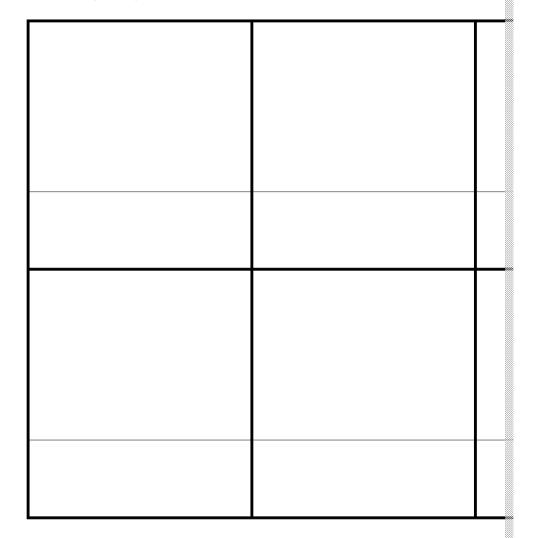
	Plenary activity: social issu
Aim of the activity	Students to demonstrate knowledge of social issues and practiquick sketching skills.
Teacher's instructions	Photocopy the activity on the next page and give one copy to 8 minutes to complete the activity. Spend 2 minutes at the end and going through student answers.
Students' task	Students should choose one of the social issues. Draw a storyl negative impacts of the social issue.

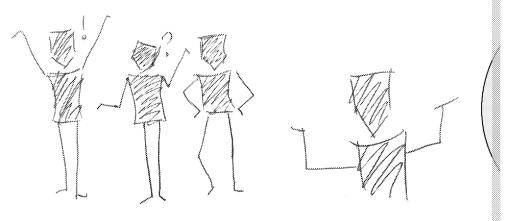
Answers:

Example answer for unsafe working conditions:

Ocompanies try to increase profits by cutting costs.	Companies fail to maintain health and safety standards, or disregard them entirely.	€
 Workers get injured, potentially in life-changing ways, or killed. 	Seriously injured workers can't work any more and struggle to support their families.	we

INSPECTION COPY




Social issues

Choose one of the social issues listed below. Draw a storyboard demonstrating the negative impacts of the social issue. Use the bigger boxes to draw in and the small boxes underneath to write short explanations about your drawings, as in a comic

Social issues:

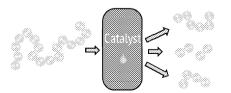
- Unsafe working conditions
- Workers paid an unfair wage
- Ocean/marine pollution
- Atmospheric pollution

INSPECTION COPY

Activity 1 1 – Sources and

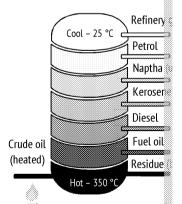
Teacher's notes and answers

	Starter activity: sources and a
Aim of the activity	Students to gain an overview of the processes involved in the source of raw material.
Teacher's instructions	Photocopy the activity on the next page and give one copy to 8 minutes to complete the activity. Spend 2 minutes at the end and going through student answers.
Students' task	Students should use the terms provided to fill in the gaps in th


Answers:

<u>Drilling</u> is the process used to extract crude oil from 'oil fields' which are pockets of crude oil within the earth's crust.

Cracking is the process used to make the products from the fractional distillation process.


This process <u>splits</u> the larger hydrocarbon molecules into smaller hydrocarbons using a **catalyst**. A catalyst is a substance that is used to activate or increase the rate of a chemical reaction.

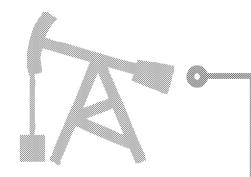
Crude oil is made from died millions of years buried and formed into pressure. Crude oil is there is a limited amo

Fractional distillation change crude oil into us

To separate the product Each product has a difference therefore, can be syphologoup. The products that have syphoned off at the boling the product of the product of the boling the product of the produc

The monomers created put into a polymerisation reaction occurs and the **polymers**. This process

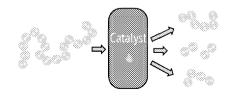
INSPECTION COPY


Sources and origins

Use the terms provided to fill in the gaps in the timeline.

Terms:

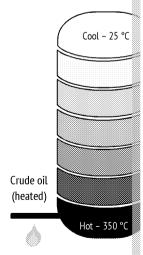
- crude oil
- drilling
- finite


- heated
- polymerisation
- splits

_____ is the process used to extract crude oil from 'oil fields' which are pockets of crude oil within the earth's crust.

Cracking is the process used to make the products from the fractional distillation process.

This process _____ the larger hydrocarbon molecules into smaller hydrocarbons using a **catalyst**. A catalyst is a substance that is used to activate or increase the rate of a chemical reaction.



is mapped and form heat and pressure. Crudwhich means that ther

Fractional distillation is change crude oil into us

To separate the products.

Each boiling point and, there a different level. The promolecules are syphoned

The monomers created in are put into a polymerisal reaction occurs and the polymers. This process is

NSPECTION COPY

Activity 12 – Working and physic

Teacher's notes and answers

Plenary activity: working and physic		
Aim of the activity	Students to learn which properties are physical and which are	
Teacher's instructions	Photocopy the activity on the next page and give one copy to bottom of the page, along the dotted line, to hide the definition definitions if they need a hint. Give the students 8 minutes to minutes at the end of this session feeding back and going through	
Students' task	Students should sort the properties into either working propershould write them into the correct column.	

Answers:

Physical properties	Wor
Thermal conductivity	 Strength
Electrical conductivity	 Toughness
Melting point	 Hardness
Corrosion resistance	 Elasticity
 Colour 	 Malleability
Opacity	 Ductility

INSPECTION COPY

Working and physical pro

Consider the list of material properties below. Decide whether they are physical properties or working properties. Write them into the appropriate columns.

- Colour
- Corrosion resistance
- Ductility
- Elasticity
- Electrical conductivity
- Hardness
- Malleability
- Melting point
- Opacity
- Strength
- Thermal conductivity
- Toughness

Wor	rties	Physical properti

NSPECTION COPY

Ne	ed	а	n	ın	T٠	

Unfold the bottom of the page to see the definitions of physical and working property

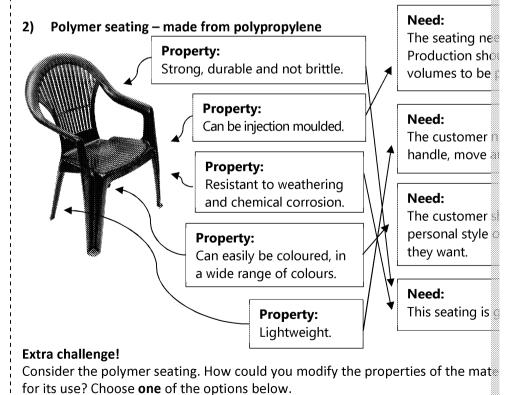
COPYRIGHT PROTECTED

Physical properties: What a material is or does even when it is not in use – the

Working properties: What a material is or how it reacts while it is in use.

Zig Zag Education

Activity 13 – Using and work materials


Teacher's notes and answers

Starter activity: using and working w		
Aim of the activity	Students to develop an understanding of how the properties of improve the functionality of a commercial product.	
Teacher's instructions	Photocopy the activity on the next page and give one copy to 8 minutes to complete the activity. Spend 2 minutes at the end and going through student answers.	
Students' task	For the first product, students should use the terms provided description of the properties of the electrical fitting to discover improve the function of the product. For the second product to match the needs to the properties of the materials used in Extra challenge! Could be used as a starter extension, mini please to the materials used and the students should answer the multiple-choice question.	

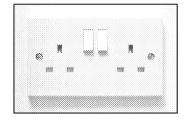
Answers:

1) Electrical fitting – made from urea-formaldehyde

This electrical fitting is made from urea-<u>formaldehyde</u>. It has been injection the same unit can be produced cheaply. The surface finish is smooth and is This means that it is a neutral part of the decor within in a house. Most impurea-formaldehyde is a very good <u>electrical insulator</u>. This means that it <u>does</u> protects the user from electric shocks.

NSPECTION COPY

COPYRIGHT PROTECTED


□ Add a scent to make it smell like freshly cut grass
 □ Add stabilisers to help resist UV degradation
 □ Add plasticisers to make it really flexible
 □ Heat it until it turns to molten plastic

Using and working with ma

You need to develop an understanding of how the properties of a material are use improve the functionality of a commercial product.

For the first product, use the terms provided to fill in the gaps in the description properties of the electrical fitting to discover how the properties affect and improperties function of the product. For the second product use arrows to match the needs to properties of the materials used in commercial products.

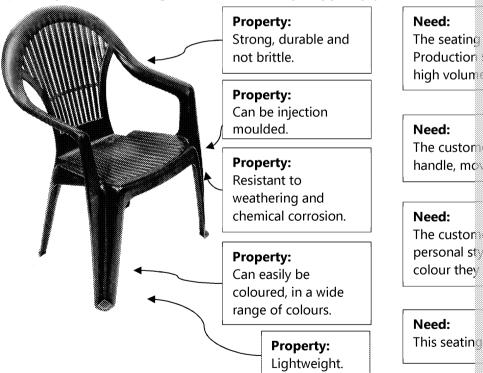
1) Electrical fitting – made from urea-formaldehyde

This electrical fitting is made from urea-_, which means _____ of the same The surface finish is smooth and it is ______ in means that it is a neutral part of the decor within a

does not

urea-formaldehyde is a very good . This means that it co

opaque


user from electric shocks.

lots

Terms:

2) Polymer seating – made from polypropylene

formaldehyde

white

Need: This seatin

Extra challenge!

Consider the polymer seating. How could you modify the properties of the mate its use? Choose one of the options below.

- Add a scent to make it smell like freshly cut grass
- ☐ Add stabilisers to help resist UV degradation
- Add plasticisers to make it really flexible
- Heat it until it turns to molten plastic

OIO Z

Activity 14 – How to: shape

Teacher's notes and answers

	Plenary activity: how to: shape a
Aim of the activity	Students to become familiar with the process of drilling.
Teacher's instructions	Split the class into pairs. Photocopy the activity on the next pair of students. Give the students 8 minutes to complete the 2 minutes at the end of this session feeding back and going the
Students' task	Extra challenge! Could be used as a starter extension, mini pleather the students should pick pne of the processes and write a simple someone could follow.

Answers:

Order (Number 1–7)	Instruction
1	Choose the correct drill bit(s), considering size and type. You correct width of the hole, and you might need a second (small needs to be smaller than the desired hole). If you are going to drill bit must be slightly smaller than the screw.
2	Prepare the surface of the material. Make sure the surface is out where the material will be drilled. Consider putting mask be drilled to make sure the drill doesn't slip and scratch the
3	If using a handheld drill, secure the material to a stable, flat secure the material to the bed and raise the bed to the corre
4	Insert the correct drill bit into the drill. Make sure the drill bit pillar drill, check that the safety guard is the correct height.
5	If needed, drill a pilot hole first – this will help guide a screw bigger drill bit to make sure it is lined up correctly.
6	Drill the hole, making sure the drill is at the correct angle.
7	Check the hole and remove excess dust and material.

Extra challenge! Allow valid answers.

INSPECTION COPY

How to: shape and fo

Put the following instructions for how to drill in the correct order by numbering the

Order (Number 1–7)	Instruction
	Check the hole and remove excess dust and material.
	Choose the correct drill bit(s), considering size and type will need one drill bit for the correct width of the hole, a you might need a second (small) drill bit for a pilot hole needs to be smaller than the desired hole). If you are go use a screw in the hole, the drill bit must be slightly small than the screw.
	Drill the hole, making sure the drill is at the correct angle
	If needed, drill a pilot hole first – this will help guide a se correctly or help to guide a bigger drill bit to make sure lined up correctly.
	If using a handheld drill, secure the material to a stable, surface. If using a pillar drill, secure the material to the and raise the bed to the correct position.
	Insert the correct drill bit into the drill. Make sure the drill is in place tightly. If using a pillar drill, check that the safe guard is the correct height.
	Prepare the surface of the material. Make sure the surfaction and grease free. Mark out where the material will drilled. Consider putting masking tape where the material be drilled to make sure the drill doesn't slip and scratch surface of the plastic.

Extra challenge!

Pick one of the processes below and write a simple set of instructions that some

- Cut
- Turn
- Mill
- Cast

INSPECTION COPY

Activity 15 – Stock forms, type

Teacher's notes and answers

Starter activity: stock forms, types	
Aim of the activity	Students to test their knowledge of stock forms, types and size
Teacher's instructions	Display a question on the board or read the question out loud the four different responses (A, B, C or D). You can give student whiteboards in order to express which choice they agree with of the room to A, B, C or D and get the students to stand in the they have chosen. Reveal the correct answer after every students
Students' task	Students should answer the questions given by standing in the indicates the letter A, B, C or D, or they can use the paper letter whiteboards given to them to give their answers to the question

Answers:

- 1. C. Granules
- 2. D. Sheet
- 3. D. Sheet
- 4. A. Rod
- 5. B. Nut

Reuse this resource!

Think about laminating these letter cards and reusing them for more multiple-choice tasks.

INSPECTION COPY

Stock forms, types and

The teacher will allocate a letter to each corner of the classroom, **or** you can use letters (A, B, C, D) given to you by your teacher to give your answers to the quest below.

- 1. What stock form of plastic is used for injection moulding?
 - A. Film
 - B. Foam
 - C. Granules
 - D. Sheet
- 2. What stock form of plastic is used for vacuum forming?
 - A. Film
 - B. Foam
 - C. Rod
 - D. Sheet
- 3. What stock form is sold by length × width × thickness?
 - A. Film
 - B. Powder
 - C. Rod
 - D. Sheet
- 4. What stock form is sold by length × width × diameter?
 - A. Rod
 - B. Powder
 - C. Granules
 - D. Foam
- 5. What standard component holds a bolt in place?
 - A. Screw
 - B. Nut
 - C. Hinge
 - D. Nail

NSPECTION COPY

INSPECTION COPY

Activity 16 – Scales of pro

Teacher's notes and answers

	Plenary activity: scales of proc
Aim of the activity	Students to learn about scales of production.
Teacher's instructions	Photocopy the activity on the next page and give one copy to students 8 minutes to complete the activity. Spend 2 minutes feeding back and going through student answers.
Students' task	Students should work in pairs to fill in the gaps in the table.

Answers:

Scale of production	Definition	
Prototype	A functioning and aesthetically correct version of a design used to test and demonstrate a design.	A≊ b≋
Batch production	A specified number of products to be produced for a limited time.	<u>N</u>
Mass production	A large number of products produced over a long period of time.	Ca
Continuous production	A production process that is constant. It operates 24/7, producing high volume for the lowest possible cost.	State

INSPECTION COPY

Scales of production

In pairs, fill in the gaps in the table below.

Scale of production	Definition	Examples of prod
Prototype		An example of how a product will be
Batch production	A specified number of products to be produced for a limited time.	
	A large number of products produced over a long period of time.	Cars and mobile phor
Continuous production		Stock forms, standard components (e.g. cab pipes, plastic sheets)

INSPECTION COPY

Activity 17 – The use of produ

Teacher's notes and answers

<u> </u>	itarter activity: the use of produ
Aim of the activity	Students to try different methods of translating a shape, incluand using a template.
Teacher's instructions	Split the class into groups of four. Photocopy the activity on the page, along the dotted line, to hide the shape. One of the students see the shape until giving feedback. Give one copy of the activistudents. Give the students 8 minutes to complete the activity. Spend 2 session feeding back. Guide the feedback to explore which me why. As a quick extension, the students could be asked which efficient if they were to duplicate the shape multiple times.
Students' task	Students should work together to duplicate the shape at the bethree different methods given to try to achieve this aim. This a groups of four. One person from the group should not see the people in the group. Two people will use Method 1 (one of the the shape), the third person will use Method 2, and the fourth everyone has finished, or 8 minutes has passed, the students method has generated the most accurate results.

Answers:

Method 3 is the most accurate.

This method is using a template.

INSPECTION COPY

The use of production 🦸

The aim of this activity is to duplicate the shape at the bottom of this page. There three different methods given to try to achieve this aim. Get into groups of four. person from the group should not see the shape, so only reveal it to three people group. Two people will use Method 1 (one of these people must not have seen the shape), the third person will use Method 2, and the fourth will use Method 3. We everyone has finished, or 8 minutes has passed, stop and discuss which method is generated the most accurate results.

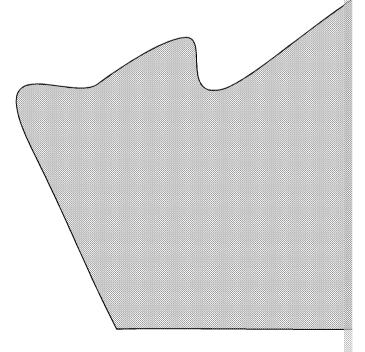
Method 1 (two people):

One person describes the shape to a second person. The second person (who has to draw the shape based on the first person's description alone.

Method 2:

The person using this method can look at the shape and use a ruler to measure a

Method 3:


The person using this method can cut out the shape and draw round it, or trace i

Which of these methods is the most accurate?

Method is the most accurate.

Unfold the bottom of the page to reveal the shape for this task. Make sure that a Method 1 doesn't see the shape!

Shape:

NSPECTION COPY

Activity 18 – Tools, equipment a

Teacher's notes and answers

Plen	ary activity: tools, equipment ar
Aim of the activity	Students to learn which manufacturing and modelling method deforming and reforming methods.
Teacher's instructions	Photocopy the activity on the next page and give one copy to 8 minutes to complete the activity. Spend 2 minutes at the end and going through student answers.
Students' task	Students should sort the processes into three different categoride deforming and reforming.

Answers:

Wastage:

- Die cutting
- Turning
- Sawing
- Drilling
- Cutting and shearing

Addition:

- 3D printing
- Bonding

Deforming and reforming:

- Vacuum forming
- Blow moulding
- Casting
- Injection moulding
- Extrusion

INSPECTION COPY

Tools, equipment and pro

Sort the processes into three different categories:

- Wastage a process or technique that involves taking material away to achield desired shape
- Addition a process or technique that involves adding material to achieve a shape
- Deforming and reforming

Category (wastage / addition / deforming and reforming)	Tools, equipment and proces
	3D printing Layers built up by a machine to produce a 3D object
	Blow moulding A manufacturing method that uses air to force a heated
	Bonding Sticking together with adhesive
	Casting A manufacturing method that involves pouring liquid plit to set
	Cutting and shearing A way of separating and dividing materials. Can be done
	Die cutting Punching out a shape with a blade by lowering it onto to pressure
	Drilling A way of making holes in hard materials, typically using
	Extrusion Molten plastic is pushed through a die of a cross-section cut to length
	Injection moulding Granules of plastic are pushed through a heating champlastic is then pushed into a mould by a hydraulic ram.
	Sawing A way of cutting material, specifically using a tool with
	Turning Using a lathe to shape material
	Vacuum forming A manufacturing method that involves heating plastic si suction to tightly mould the plastic sheet to a form

INSPECTION COPY

Activity 19 – Tolerances and q

Teacher's notes and answers

Aim of the activity Teacher's instructions Students' task Students' task

Answers:

1	Did it meet the tolerances?
1	☑ Yes □ No
2	Did it meet the tolerances?
۷	□ Yes ☑ No
3	Did it meet the tolerances?
5	☑ Yes □ No
4	Did it meet the tolerances?
4	□ Yes ☑ No
5	Did it meet the tolerances?
5	☑ Yes □ No
c	Did it meet the tolerances?
6	☑ Yes □ No
7	Did it meet the tolerances?
7	□ Yes ☑ No

Extra challenge!

How would you make sure you get the highest quality finish when using a laser cultinose **one** of the options below.

- ☐ Make sure the laser settings are correct for the material being used.
- ☐ Keep the machine clean and in working order.
- ☐ Make sure that an allowance is made for kerf (a small amount of material the laser cutting).
- ☑ All of the above.

Tolerances and quality c

Did it meet the toler

Tolerances are the minimum and maximum meaurements that a product or part to be in order to be usable.

Below are seven rectangles which represent seven pieces of sheet plastic that have cut out to form the side of a box. Measure the length of each piece to see whether tolerances.

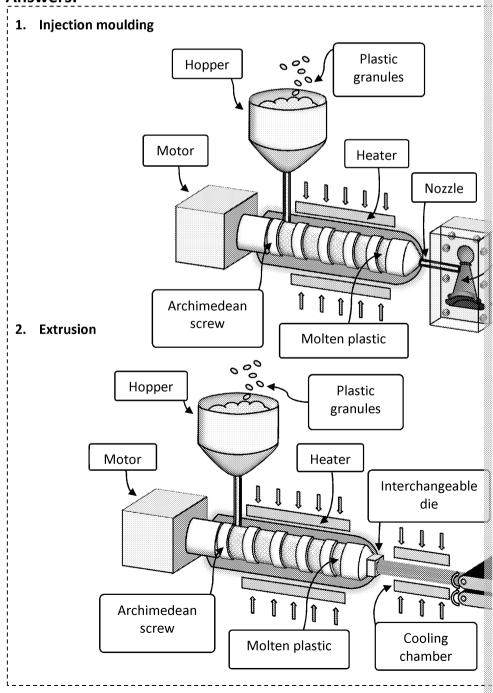
The measurement should be 5 cm with tolerances of \pm mm.

1.

					Yes	C)
2.			Did	it n	neet the	toler
					Yes	
3.			Did i	it m	neet the 1	toler≋
					Yes	[]
4.						
					eet the t Yes	olera: □
5.			L	_	res	L
5.			Did it	: me	eet the to	olera
] Y	⁄es	
6.			Did i	t m	eet the t	oler≋
			_		Yes	
7.		\neg				
			_		eet the to	olera
] \	Yes	
	you make sure you get the highes	st qua	ality finish whe	en u	using a las	ser c
☐ Make s	of the options below. Sure the laser settings are correct			ing	used.	
☐ Make s laser c	he machine clean and in working of Sure that an allowance is made for utting). he above.			ınt	of mater	ial the

INSPECTION COPY

COPYRIGHT PROTECTED


Zig Zag Education

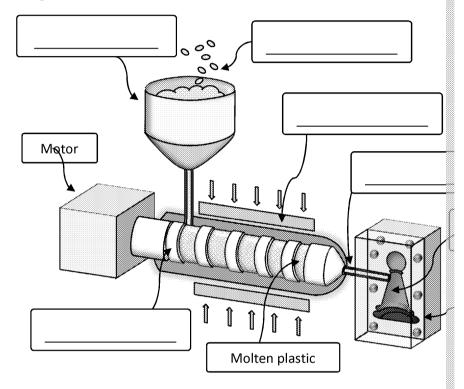
Activity 20 - Commercial pr

Teacher's notes and answers

	Plenary activity: commercial pro
Aim of the activity	Students to practise knowledge of commercial processes.
Teacher's instructions	Split the class into pairs. Photocopy the activity on the next pair of students. Give the students 8 minutes to complete the 2 minutes at the end of this session feeding back and going the
Students' task	Students should choose from the labels given to label the diagraph processes.

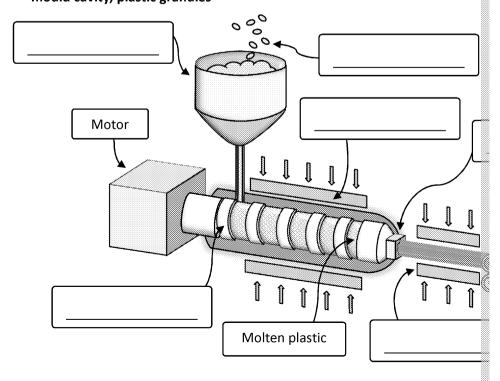
Answers:

NSPECTION COPY



Commercial processe

The diagrams below illustrate the processes of injection moulding and extrusion. the diagrams using the words provided.


1. **Injection moulding** – choose from the labels below:

Archimedean screw, heater, hopper, mould, mould cavity, nozzle, plastic granules

2. **Extrusion** – choose from the labels below:

Archimedean screw, heater, cooling chamber, hopper, extruded plastic, in mould cavity, plastic granules

NSPECTION COPY

Activity 21 – Surface treatments

Teacher's notes and answers

Plen	ary activity: surface treatments
Aim of the activity	Students to practise their knowledge of surface treatments and
Teacher's instructions	Photocopy the activity on the next page and give one copy to 8 minutes to complete the activity. Spend 2 minutes at the end and going through student answers.
Students' task	Students should number the instructions in the correct order. finishes include olishing, printing and vinyl decals.

Answers:

Polishing

Polishing is used to produce a high-shine finish and a high-quality appearance.

Number of instruction	Instruction
1	Clean and degrease the surface of the material.
2	Sand the surface with a series of sandpaper grit levels – from harsh to smooth the surface.
3	Buff the surface using a cotton wheel and cutting compound to crea

Printing

Heat transfer printing / sublimation printing and hydrographic printing are both techni Heat transfer printing

Number of instruction	Instruction
1	Print your design onto special paper. Clean and degrease the surface of the material.
2	Clean and degrease the surface of the material.
3	Place the image face down onto the surface.
4	Apply heat to the reverse – this transfers it to the surface of the plas
5	Remove the backing paper.

Hydrographic printing

Hydrographic printing allows a graphic design to be applied to a three-dimensional sur

Number of instruction	Instruction
1	Print your design onto water-soluble film.
2	Float the film onto a water bath.
3	When an activator solution is added, the film dissolves and leaves the
4	Clean and degrease the surface of the material.
5	Dip the product into the water – as it enters the bath, the image is w

Vinyl decals

Number of instruction	Instruction
1	Prepare your design and cut it out of the vinyl film and backing. (You cutter or CNC cutter.)
2	Clean and degrease the surface of the material.
3	Peel the backing off the vinyl film and apply the design onto the sur surface.
4	Smooth down the vinyl decal and carefully push out any air bubbles

NSPECTION COP

Surface treatments and fi

Consider the instructions for surface treatments and finishes. The order of the instructions has been mixed up! Number the instructions in the correct order.

Polishing

Polishing is used to produce a high-shine finish and a high-quality appearance.

Number of instruction	Instruction
	Buff the surface using a cotton wheel and cutting compound to c
	Clean and degrease the surface of the material.
	Sand the surface with a series of sandpaper grit levels – from har smooth the surface.

Printing

Heat transfer printing / sublimation printing and hydrographic printing are both teplastics.

Heat transfer printing

Number of instruction	Instruction
	Apply heat to the reverse – this transfers it to the surface of the
	Clean and degrease the surface of the material.
	Place the image face down onto the surface.
	Print your design onto special paper.
	Remove the backing paper.

Hydrographic printing

Hydrographic printing allows a graphic design to be applied to a three-dimension

Number of instruction	Instruction
	Clean and degrease the surface of the material.
	Dip the product into the water – as it enters the bath, the image
	Float the film onto a water bath.
	Print your design onto water-soluble film.
	When an activator solution is added, the film dissolves and leave the bath.

Vinyl decals

Vinyl decals are shapes and designs that are cut out of a film made of vinyl.

Number of instruction	Instruction
	Clean and degrease the surface of the material.
	Peel the backing off the vinyl film and apply the design onto the surface.
	Prepare your design and cut it out of the vinyl film and backing. (use a die cutter or CNC cutter.)
	Smooth down the vinyl decal and carefully push out any air bubb

INSPECTION COPY

